Supplementary Information

A facile route to core-shell nanoparticulate formation of arsenic trioxide for effective solid tumor treatment

Zongjun Zhang,^a Hanyu Liu,^a Hualu Zhou,^a Xianglong Zhu,^a Zhenghuan Zhao,^a Xiaoqin Chi,^b Hong Shan,^c and Jinhao Gao*^a

^a State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of
Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian
Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering,
Xiamen University, Xiamen 361005, China

^b Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma,

Zhongshan Hospital, Xiamen University, Xiamen 361004, China

^c Department of Radiology, The Third Affiliated Hospital, and Interventional Radiology Institute, Sun Yat-sen University, Guangzhou 510630, China

*Email: jhgao@xmu.edu.cn

Fig. S1 TEM image of $NiAsO_x$ nanoparticles. Scale bar, 100 nm.

Fig. S2 (a) Molecular structure of Igepal Co-520; (b) Scheme of NiAsO_x@SiO₂-ZW nanocomposites with the sulfobetaine siloxane zwitterion molecules on surface.

Fig. S3 Particle size distribution for NiAsO_x@SiO₂ (a) and NiAsO_x@SiO₂-ZW (b) nanocomposites in the presence and absence of 20% (v/v) fetal bovine serum (FBS) after 48 h.

Fig. S4 (a) Confocal fluorescence imaging of HuH-7 cells treated with NiAsO_x@SiO₂-DOX (4 μ M DOX) for 6 h, scale bars: 7.5 μ m. Hoechst 33342 and LysoTracker green were used to stain cell nuclei (blue) and lysosome (green), respectively. (b) Total amount of As ions in Huh-7 cancer cells incubated with free ATO, NiAsO_x@SiO₂ and NiAsO_x@SiO₂-ZW for 6 h or 12 h. The concentration of As was tested by ICP-MS (n = 3/group). (c) The zeta-potential analysis of NiAsO_x@SiO₂ (upper) and NiAsO_x@SiO₂-ZW (below) in PBS buffer.

Fig. S5 (a) The cytotoxicity of Ni ions and SiO₂ nanoparticles against Huh-7 cell after incubation for 24 h. (b) Quantitative flow cytometric analysis of Huh-7 cells after treatment with PBS, ATO (10 μ M), Ni ions (150 μ M) and SiO₂ (100 μ g/mL) for 24 h, respectively. Cells were stained with propidiumiodide (PI) and Annexin-V for recognizing the phosphatidylserine presented on apoptosis cells at room temperature.

Fig. S6 Histopathology of mouse tissues following an intravenous injection of PBS, ATO, $NiAsO_x@SiO_2-ZW$ with the dose of 2.0 mg As per kg via tail vein. Representative sections of various organs taken from mice were stained by hematoxylin and eosin (H&E) at 24 h post-injection. Scale bar: 100 µm.