Electronic Supporting Information

Facile Fabrication of Organic/Inorganic Nanotube Heterojunction Arrays for

Enhanced Photoelectrochemical Water Splitting

Yingzhi Chen, ${ }^{a}$ Aoxiang Li, ${ }^{a}$ Xiaoqi Yue, ${ }^{a}$ Lu-Ning Wang, ${ }^{*}$ Zheng-Hong Huang, ${ }^{* b}$ Feiyu Kang ${ }^{b}$ and Alex A. Volinsky ${ }^{\text {c }}$
${ }^{a}$ School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
${ }^{b}$ Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
${ }^{\text {c }}$ Department of Mechanical Engineering, University of South Florida, Tampa, FL 33620, USA

Fig. S1 Schematic illustration of the PVD process for fabricating $\mathrm{PDi} / \mathrm{TiO}_{2}$ junctions with different deposition distances.

Fig. S2 SEM images of TiO_{2} nanotube arrays: (A) top view; (B) TiO_{2} nanotube arrays were scraped off to measure the length; (C) cross-sectional view.

Fig. S3 EDX results of TiO_{2} nanotube arrays (A), $\mathrm{PDi} / \mathrm{TiO}_{2}$ junction I (B), II (C), III (D), IV (E).

Fig. S4 The magnified XRD spectra of PDi and $\mathrm{PDi} / \mathrm{TiO}_{2}$ junction IV.

Fig. S5 FT-IR spectra of the synthesized samples.

Fig. S6 The fluorescence emission spectra of PDi based samples excited at 450 nm .

Fig. S7 The magnified photocurrent density of PDi in NaOH solution (8.1 pH) under chopped illumination ($100 \mathrm{~mW} \mathrm{~cm}^{-2}$).

Fig. S8 FT-IR spectra of junction III after long-time illumination as a photoanode.
Table S1. Parameters obtained by fitting the impedance spectra using Z-View software.

Sample	TiO_{2}, Dark	TiO_{2}	Junction I	Junction II	Junction III	Junction IV
$\boldsymbol{R s}(\boldsymbol{\Omega})$	257.1	249	204.2	169.7	117.1	146.1
$\boldsymbol{R c t}(\boldsymbol{\Omega})$	2831	2738	2156	1905	1290	1564

Table S2. Summary of bi-exponential kinetic fits of the FL decay profile.

	$\tau_{1}(\mathrm{~ns})$	B_{1}	$\tau_{2}(\mathrm{~ns})$	B_{2}	$\langle\tau\rangle a(\mathrm{~ns})$
PDi	3.811	0.0023	0.531	0.1311	0.9
Junction I	3.421	0.006719	0.344	0.15	1.29
Junction II	5.622	0.01055	0.682	0.08519	3.18
Junction III	6.015	0.02144	0.952	0.05276	4.6
Junction IV	5.551	0.015	1.552	0.0529	3.57

${ }^{a}\langle\tau\rangle=\left(B_{1} \tau_{1}^{2}+B_{2} \tau_{2}^{2}\right) /\left(B_{1} \tau_{1}+B_{2} \tau_{2}\right)$

