Supporting Information

Supramolecular Gel-Assisted Synthesis of Double Shelled Co@CoO@N-C/C Nanoparticles with Synergistic Electrocatalytic Activity for the Oxygen Reduction Reaction

Zexing Wu, Jie Wang, Lili Han, Ruoqian Lin, Hongfang Liu, Huolin L. Xin, and Deli Wang*

Fig. S1 Images of the supramolecular hydrogel.

Fig. S2 FE-SEM image of Vulcan XC-72.

Fig. S3 TEM images of Co/CoO/C and M-Co/Co/CoO.

Fig. S4 Thermo gravimetric analysis (TGA) of M-Co/CoO tested in flowing air at temperature ramp of 10 °C min⁻¹.

Fig. S5 FT-IR spectra of melamine and Co-Melamine xerogel.

Fig. S6 Line profile spectra of Co@CoO@N-C/C nanoparticle.

C1s

– Co/CoO/C – N-C

Fig. S9 (a) N 1s spectra of N-C and Co@CoO@N-C/C. (b) Co 2p spectrum of Co/CoO/C and Co@CoO@N-C/C.

Fig. S10 (a), (b) XRD patterns and ORR polarization curve of AT-Co@CoO@N-C/C.

Fig. S11 ORR polarization curve of Vulcan XC-72.

Fig. S12 ORR polarization curve of M-Co/CoO.

Fig. S13 (a) ORR polarization curves of Co@CoO@N-C/C after heat-treated at different temperature. (b) ORR polarization curves of different mass of melamine in N-C.

Fig. S14 Tafel plots of Pt/C, N-C, Co/CoO/C and Co@CoO@N-C/C in O2-saturated 0.1 M KOH electrolyte.

Fig. S15 CV curves of Pt/C (a) and Co@CoO@N-C/C (b) in O_2 saturated 0.1 M KOH electrolyte with or without 1 M methanol at a scan rate of 50 mVs⁻¹.

Fig. S16 i-t chronoamperometric response of Pt/C and Co@CoO@N-C/C in 0.1 M KOH solution with introduction of 1 M methanol after about 400 s.

Fig. S17 Long-term durability measurement of Co@CoO@N-C/C at a poential of 0.7 V in O_2 -saturated 0.1 M KOH solution.

Fig. S18 TEM images of Co@CoO@N-C/C after long-term durability measurement.

Catalysts -	ORR activity (V vs. RHE) ^a			
	ORR peak ^b	Onset potential	Half-wave potential ^c	— Ref.
Co@CoO@N-C/C	0.79	0.95	0.81	This work
N-CG-C0O #1 M KOH	0.76	0.90	0.79	[1]
CoO/C	-	0.83	0.77	[2]
NCO-A ₁	0.7 #5 mv s ⁻¹	0.93	0.78	[3]
CoO _X /BP-N	-	0.86 #10 mv s ⁻¹	0.79	[4]
Co/N-C	0.73	0.83 #10 mv s ⁻¹	0.74	[5]
C@Co-P/C	-	0.87	0.80	[6]
C0@C03O4@C	0.79	0.93 #10 mv s ⁻¹	0.81	[7]
Co/CoO/CoFe ₂ O ₄ /G	0.7	0.77 #10 mv s ⁻¹	0.69	[8]
Co ₂ FeO ₄ /MWCNT	0.7	0.91	0.73	[9]
C03O4@N-C	0.80	0.95	0.7	[10]
Co/Co ₃ O ₄ /C-N	-	0.95 #20 mv s ⁻¹	0.74	[11]
NG/CNT/Co ₃ O ₄	-	0.9 #10 mv s ⁻¹	0.71	[12]
Co-N-CAs	0.79	0.84 #10 mv s ⁻¹	0.78	[13]
Co-N-rGO	0.79	0.91 #10 mv s ⁻¹	0.77	[14]
Co ₃ O ₄ /N-MG	0.82	0.93	0.81	[15]

Table S1 Comparison of the ORR performance of some cobalt based catalysts reported in literature.

^{*a*} Conversions of Hg/HgO electrode, Ag/AgCl electrode, and SCE into RHE scale were achieved by adopting the calibration results.

^b ORR peak was obtained from cyclic voltammetry measured in O₂-saturated 0.1 M KOH aqueous solution with a sweep rate of 50 mV s⁻¹ unless otherwise noted.

^{*c*} Onset potential and Half-wave potential were obtained from linear sweep voltammetry performed on RDE in O_2 -saturated 0.1 M KOH solution with a rotation rate of 1600 rpm.

1. S. Mao, Z. Wen, T. Huang, Y. Hou and J. Chen, Energy Environ. Sci., 2014, 7, 609-616.

2. J. Liu, L. Jiang, B. Zhang, J. Jin, D. S. Su, S. Wang and G. Sun, ACS Catal., 2014, 4, 2998-3001.

3. M. Prabu, K. Ketpang and S. Shanmugam, Nanoscale, 2014, 6, 3173-3181.

4. J. Liu, L. Jiang, Q. Tang, E. Wang, L. Qi, S. Wang and G. Sun, *Appl. Catal. B: Environ.*, 2014, **148-149**, 212-220.

5. Y. Su, Y. Zhu, H. Jiang, J. Shen, X. Yang, W. Zou, J. Chen and C. Li, *Nanoscale*, 2014, 6, 15080-15089.

6. J. Ryu, N. Jung, D.-H. Lim, D. Y. Shin, S. H. Park, H. C. Ham, J. H. Jang, H.-J. Kim and S. J. Yoo, *Chem. Commun.*, 2014, **50**, 15940-15943.

7. W. Xia, R. Zou, L. An, D. Xia and S. Guo, Energy Environ. Sci., 2015, 8, 568-576.

8. R. Huo, W.-J. Jiang, S. Xu, F. Zhang and J.-S. Hu, Nanoscale, 2014, 6, 203-206.

9. J. Wang, H. L. Xin, J. Zhu, S. Liu, Z. Wu and D. Wang, J. Mater. Chem. A, 2015, 3, 1601-1608.

10. G. Zhang, C. Li, J. Liu, L. Zhou, R. Liu, X. Han, H. Huang, H. Hu, Y. Liu and Z. Kang, J.

Mater. Chem. A, 2014, 2, 8184-8189..

11. Z.-Y. Wu, P. Chen, Q.-S. Wu, L.-F. Yang, Z. Pan and Q. Wang, *Nano Energy*, 2014, **8**, 118-125.

12. S. S. Li, H. P. Cong, P. Wang and S. H. Yu, Nanoscale, 2014, 6, 7534-7541.

13. B. You, P. Yin and L. An, Small, 2014, 10, 4352-4361.

14. B. Zheng, J. Wang, F.-B. Wang and X.-H. Xia, J. Mater. Chem. A, 2014, 2, 9079-9084.

15. J. Xiao, X. Bian, L. Liao, S. Zhang, C. Ji and B. Liu, ACS Appl. Mater. Inter., 2014, 6, 17654-17660.