Supplementary Information of

Hydrogenated Blue Titania with High Solar Absorption and Greatly Improved Photocatalysis

Guilian Zhu,^{a,b} Yufeng Shan,^{a,b} Tianquan Lin,^a Wenli Zhao,^{a,b} Jijian Xu,^a Liuzhang Tian, ^{a,b} Hui Zhang,^{a,†} Chong Zheng,^{c,†} Fuqiang Huang^{a,b,†}

^a CAS Key Laboratory of Materials for Energy Conversion and State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China

^b Beijing National Laboratory for Molecular Sciences and State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China

^c Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, USA

Fig. S1 Large scale preparation of hydrogenated blue titania (TiO_{2-x}:H) using our TiH₂-reduction method.

Fig. S2 HRTEM image of (a) freshly unwashed TiO_{2-x} :H, (b) washed TiO_{2-x} :H and (c) annealed TiO_{2-x} :H.

Fig. S3 The photographs of pristine P25 TiO_2 , oxygen deficient TiO_2 by aluminium reduction (black Al-TiO₂ and dark blue Al-TiO₂ by H₂O₂ washing), hydrogenated TiO₂ by H plasma method (black H Plas-TiO₂ and dark blue H Plas-TiO₂ by H₂O₂ washing), and hydrogenated blue TiO₂ by TiH₂ reduction (TiO_{2-x}:H).

Fig. S4 (a) Ti 2p XPS spectra and (b) XPS valence band spectra of pristine TiO_2 and TiO_{2-x} :H.

Fig. S5 (a) Solar-light driven photocatalytic decomposition of methyl orange, (b) $\ln(C/C_0)$ of the MO concentration as a function of UV light irradiation time of TiO_{2-x}:H and annealed TiO_{2-x}:H at 200 °C, 300 °C and 400 °C, respectively.