Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2016

Carbon coated SnO₂ nanoparticles anchored on CNT as a superior anode material for lithium-ion batteries

Chunrong Ma,^a Weimin Zhang,^{*a,b} Yu-Shi He,^a Qiang Gong,^c Haiying Che,^{a,b} and Zi-Feng Ma^{*a,b}

^aShanghai Electrochemical Energy Devices Research Centre, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China ^bSinopoly Battery Research Centre, Shanghai, 200241, China ^cSchool of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China Email: wm_zhang@sjtu.edu.cn; zfma@sjtu.edu.cn

Figure S1 HRTEM image of the C-SnO₂/CNT.

Figure S2 SEM and TEM images of SnO₂/CNT composite.

Figure S3 Nitrogen adsorption/desorption isotherms and the BJH distribution of the $C-SnO_2/CNT$ composite.

Figure S4 TGA analysis of the C-SnO₂/CNT and SnO₂/CNT composites.

Figure S5 Cycling performance of CNTs and SnO_2 electrode at a current density of 1 A g⁻¹.