Nanoscale

ARTICLE

Progesterone Binding Nano-Carriers Based on Hydrophobically Modified Hyperbranched Polyglycerols

Received 00th January 20xx, Accepted 00th January 20xx

M. Alizadeh Noghani ^a and D. E. Brooks ^{a, b,*}

DOI: 10.1039/x0xx00000x

www.rsc.org/

Supporting Information

Figure S-1. Chemical structure of Progesterone (Pro)

Figure S-2. ¹H NMR spectrum of HPG-C₈-MPEG in CDCl₃

Figure S-3. GPC chromatogram of HPG-C₁₂-MPEG; Red line belongs to multi-angle light scattering detector and blue line belongs to refractive index detector

ARTICLE

Figure S-6. FTIR spectrum of HPG-C_8-MPEG

Figure S-7. Inverse-gated $^{13}\mathrm{C}\,\mathrm{NMR}$ spectrum of HPG-C_8-MPEG in methanol-d_4

Figure S-8. Semi-log plot to determine initial rapid release kinetics for HPG-C₈-MPEG/Pro in PBS; $R^2 = 0.99$ and p < 0.05; rate constant k_1 is given in <u>Error! Reference source not found</u>. Table 3

Figure S-9. Semi-log plot to determine secondary slow release kinetics for HPG-C₈-MPEG/Pro in PBS; R² = 0.97 and p < 0.05; rate constant k₂ is given in Error! Reference source not found.Table 3

Figure S-10. Semi-log plot illustrating the kinetics of Pro release from HPG-C_8-MPEG/Pro in plasma

Journal Name

Figure S-12. Correlation between the maximum binding capacity of HPG-C_n-MPEG polymeric systems for binding Pro and their total mass of alkyl carbon external to the oxygen (R^2 = 0.77 and p < 0.025)

Sample	Concentration (mg/ml)	R _h (nm)
HPG-C ₁₀ -MPEG	0.05	5.6 (±1.0 %)
HPG-C ₁₀ -MPEG/Pro	0.05	5.4 (±0.9 %)
HPG-C ₁₀ -MPEG	1	5.6 (±0.8 %)
HPG-C ₁₀ -MPEG/Pro	1	5.6 (±0.7 %)
HPG-C ₁₀ -MPEG	1.5	5.6 (±0.7 %)
HPG-C ₁₀ -MPEG/Pro	1.5	5.5 (±0.6 %)
HPG-C ₁₀ -MPEG	2	5.3 (±0.8 %)
HPG-C ₁₀ -MPEG/Pro	2	5.3 (±1.0 %)

Table S-1. Effect of loaded Pro on HPG-C_n-MPEG size

Figure S-13. DLS size determination of HPG-C₁₀-MPEG at 2 mg/ml (on the left) and HPG-C₁₀-MPEG/Pro at 2 mg/ml of polymer and 25 µg/ml of Pro (on the right). The minor population of larger particles was reduced in mean diameter by Pro binding, illustrated above, consistent with an earlier report¹¹

ARTICLE