Electronic Supplementary Information (ESI)

Directed Assembly of Thylakoid Membrane on Nanostructured TiO₂ for a Photo-electrochemical cell

Shalinee Kavadiya,^a Tandeep S. Chadha,^a Haijun Liu,^b Vivek B. Shah,^a Robert E. Blankenship,^b Pratim Biswas ^{a*}

^a Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA

^b Department of Biology and Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA

*Corresponding author. E-mail: pbiswas@wustl.edu.cn; Tel: ++1-314-935-5548; Fax: +1-314-935-5464.

Table of Content:
(SI-1) Experimental Method
(SI-2) SEM image of 1-D columnar structure of TiO2
(SI-3) XRD data for TiO2
(SI-4) Calculation of surfactant concentration profile with time and distance travelled by PSI, PSII and cytochrome b₆f
(SI-5) Absorption spectra of the membrane in solution and after deposition
(SI-6) Onset potential values
(SI-7) Linear sweep voltammetry results for case 2
(SI-8) Photocurrent density values
(SI-9) Photocurrent action spectra for case 1 and case 2
(SI-10) References

(SI-1) Experimental Section:

Membrane Isolation:

The thylakoid membrane was extracted from cyanobacteria *Synechocystis* 7803. *Synechocystis sp.* PCC 6803 strain was grown in BG11 medium at 30°C under 30 µmol photons m⁻²·s⁻¹ with air bubbling in 15 l carboys autotrophically. Cells were harvested at exponential growth phase and resuspended in Resuspension Buffer (RB, 50 mM MES-NaOH, pH 6.5, 10 mM MgCl₂, 5 mM CaCl₂, 25% glycerol). DNase and protease inhibitor cocktail (Sigma, St. Louis, MO, USA) were added according to manufacturer's protocol. The cell suspension was broken with four cycles of French Press at 1000 psi. After removing unbroken cells by centrifugation at 1,500xg for 15 min, membranes were pelleted by centrifugation at 35,000xg for 30 min. The pelleted thylakoid membrane was washed twice using RB buffer and finally resuspended in RB at 1 mg/ml of chlorophyll *a*.

*TiO*² and membrane deposition:

Columnar TiO₂ nanostructured films were deposited onto tin-doped indium oxide (ITO) coated aluminosilicate glass (Delta technologies, CO) using an aerosol chemical vapor deposition (ACVD) process described previously.¹ Briefly, titanium tetraisopropoxide (TTIP, 97% Sigma-Aldrich) was used as a precursor and loaded into a bubbler at 297 K. The N₂ carrier gas was kept at a constant flow rate of 0.475 L min⁻¹ through the bubbler. Additionally, a dilution flow rate (N₂) of 0.475 L min⁻¹ was used. The TiO₂ formed as a result of the decomposition of the precursor, nucleates in the gas phase and forms particles. These particles are deposited onto ITO glass kept at a constant temperature of 550 °C where they sinter to form columnar TiO₂ single crystal structures. The total deposition time of TiO₂ was fixed at 60 minutes. The morphology of the nanostructure titanium dioxide film was examined using field emission scanning electron microscopy (FESEM). Gold sputtering of the samples was performed for 30 seconds before FESEM analysis in order to improve the resolution of the images. The crystallinity of the film is analyzed using X-ray diffraction.

Thylakoid membrane modification and solution preparation:

For each of the three cell configuration cases, the membrane sample preparation is shown in the table S1 below. The membrane sample was diluted with water and surfactant, and centrifuged to remove glycerol and salts. The centrifuged membrane is diluted with ethanol, water ammonium acetate and surfactant. The concentration of surfactant varies according to the cell configuration and is mentioned in the table. The solution properties are given in the Table S2.

Table S1. Experimental procedure to prepare the electrospray solution including the solution composition and the state of membrane (in

parenthesis and italic) for the three cases.

	Experimental Procedure				
Case 1-no surfac- tant addition	Membrane sample + Water (Intact membrane)	Centrifugation	Intact Membrane	Electrospray solution	Membrane + 10% ethanol + 3mM ammonium acetate and water (Intact membrane)
Case 2- surfac- tant addition af- ter centrifugation	Membrane sample + Water (Intact membrane)	Centrifugation	Intact Membrane	Electrospray solution	Membrane + 10% ethanol + 3mM ammonium acetate + DDM solu- tion (0.01% v/v in water) (Broken membrane; PSI, PSII and cyto- chrome b ₆ f solubilized with lipid and sur- factant)
Case 3- surfac- tant addition be- fore centrifuga- tion	Membrane sample + DDM solution (0.01% v/v in water) (Broken membrane; PSI, PSII and cytochrome b6f solubilized with lipid and surfactant)	Centrifugation	PSI, PSII and cyto- chrome b ₆ f with very less concentra- tion of lipid and sur- factant (<0.007 % v/v)	Electrospray solution	Membrane + 10% ethanol + 3mM ammonium acetate + water (Broken membrane; PSI, PSII and cyto- chrome b ₆ f solubilized with very low con- centration of lipids and surfactant)

Table S2. Electrospray solution properties and conditions for deposition.

							Droplet proper-
Spray solution properties			Electrospray conditions			ties	
		Ammonium					
	Dielectric con-	Acetate			Cone-jet		Mean droplet
Solvent	stant	Concentration	Conductivity	Flow rate	Voltage	Current	size ⁱ
	-	mM	µS cm⁻¹	µL min⁻¹	kV	nA	nm
10% Ethanol in							
water (v/v)	72.3	3	235	1 ± 0.01	5.85-6.2	650-700	702

ⁱUsing scaling law equation²

Electrospray Deposition

An in-house electrospray deposition was used as described in previous study³ The membrane solution was pumped at a flow rate of $1 \ \mu L \ min^{-1}$ through a syringe connected to a needle using a syringe pump. The needle had an inner diameter of 125 μm and was tapered at the machine shop at Washington University in St. Louis. High voltage was applied to the needle and the TiO₂ deposited substrate was grounded. CO₂ sheath flow rate of 20 cc min⁻¹ was supplied in the chamber to prevent the corona discharge of surrounding fluid. The voltage is adjusted to 5.85-6.2 kV using high voltage source with the current of 650-700 nA to get a cone-jet mode for electrospray deposition. The tip of the needle is monitored using a camera. The deposition was carried out for 10 min, 20 min, and 40 min for all the three cases. Absorption spectra of the membrane are measured in solution and after deposition using Shimadzu UV 2600 Spectrophotometer.

Fig. S1 Overview of linker-free deposition of thylakoid membrane on nanostructured TiO₂ columns using electrospray *Photo-electrochemical Characterization:*

Three electrode photo-electrochemical characterization of the membrane sensitized TiO₂ working electrode was performed using an in-house electrochemical set up. Pt wire was used as counter electrode and Ag/AgCl as reference electrode. Light source used was 450 W Xe arc lamp (Newport Corporation, CA). The electrode was tested with 0.1 M KCl solution and linear sweep voltammetry was performed using a VersaStat 4 (Princeton Applied Research, TN) potentiostat. No electron donor or acceptor was added to the electrolyte. Water filter was used to block infrared wavelength and 400 nm cut-off filter (Newport Corporation, CA) is used to block UV wavelengths where needed. Incident photo-to-current conversion efficiency (IPCE) was measured in visible range (400-750nm) using a monochromator in front of the xenon lamp to select the wavelength of the light. IPCE was calculated from the equation given in reference⁴

(SI-2) SEM image of 1-D columnar structure of TiO₂

SEM image of the 1-D, single crystal, nanostructured TiO_2 columns shows the average column height of 1.6 μ m. A previous study¹ has shown this to be the optimal morphology and height for PEC characterization.

Fig. S2 SEM image of 1-D single crystal nanostructured TiO₂

(SI-3) XRD results of TiO₂

XRD spectra of the TiO_2 nanostructures presented in Figure S2 shows the highest peak for (112) planes and few small peaks for other planes, confirming the anatase phase of TiO_2 . The highest intensity of the peak for (112) validate the absence of grain boundaries thus confirms the single crystal structure of TiO_2 .

Fig. S3 XRD spectra of 1-D single crystal nanostructured TiO₂

(SI-4) Calculation of surfactant concentration profile with time and distance travelled by PSI, PSII and cytochrome b₆f⁵

Calculation of the surfactant concentration profile with time can be solved by the diffusion equation:

$$c(t) = \frac{N}{A} \frac{1}{2\sqrt{\pi Dt}} \exp(\frac{-x^2}{4Dt})$$
 [Eq. (1)]

Where, c(t) is the concentration of surfactant at a distance x away from the surface, t is the time, D is the diffusion coefficient, N is the amount of DDM deposited and A is the surface area. Although the surfactant is deposited over columnar TiO₂, all of the surfactant is assumed to be located on the surface (at x = 0). The concentration of surfactant with time can be calculated by:

$$c_{CMC} = \frac{N_A}{2\sqrt{\pi Dt}}$$
 [Eq. (2)]

Table (3a) shows the detailed parameters used in the calculation. [Eq.(2)] is used to solve for the time required to reach a concentration below CMC. During that time, PSI, PSII and cytochrome $b_6 f$ may diffuse into the electrolyte. The diffusion length of these molecules can be calculated by the root mean square distance

$$L = \sqrt{2Dt}$$
[Eq. (3)]

where D is the diffusion coefficient and t is time. The diffusion coefficient of one molecule of PSI, PSII and cytochrome $b_6 f$ is calculated by Stoke-Einstein equation:

$$D = \frac{kT}{3\pi\mu d}$$
[Eq. (4)]

Where: μ is the viscosity of solution, k is Boltzmann constant, d is the size of the spherical particle. Using the diffusion coefficient from [Eq. (4)] and time from [Eq. (2)], the distance travelled by individual PSI, PSII and cytochrome b₆f are calculated and listed in Table 1 in the paper. Table S3 (a) provides the value of the parameter used in this calculation and Table S3 (b) shows the calculation of diffusion coefficient of PSI, PSII and cytochrome b₆f. **Table S3 (a)** Parameters used for the calculation of diffusion time of surfactant and diffusion length of PSI, PSII and cytochrome b₆f. (b) Diffusion coefficient of PSI, PSII and cytochrome b₆f using Stoke-Einstein equation.

(a)

DDM added	0.01 % v/v of water
Water added	180 μL
DDM concentration	0.009 % v/v
Flow rate	1 μL min ⁻¹
Deposition area	0.1 cm^2
Diffusion coefficient of DDM ⁶	$5.4 \times 10^{-10} \text{ m}^2 \text{ s}^{-1}$
CMC of DDM	0.007 % v/v
Temperature	293.15 K
Solution Viscosity	0.00089 Pa.s
k _b (Boltzmann constant)	1.38×10 ⁻²³ J K ⁻¹

(b)

	Volume equivalent diameter (Å)	Diffusion coeffi- cient (m ² s ⁻¹)
PSI ⁵	220	2.19×10 ⁻¹¹
PSII ⁷	100.30	4.81×10 ⁻¹¹
Cytochrome		
<i>b</i> 6 <i>f</i> ⁷	74.81	6.45×10 ⁻¹¹

(SI-5) Absorption Spectra of the membrane in solution and after deposition

Figure S4. Absorption Spectra of the membrane in solution and after deposition ITO slide measured for (a) Case 1 -no surfactant addition,

(b) Case 2 -surfactant addition after centrifugation and, (c) Case 3 -surfactant addition before centrifugation

(SI-6) Onset potential values

Table S4 Onset potential values (in volts) for bare TiO_2 and the three cases from the Linear scan voltammetry measurements under (a) UVand visible light (250-900 nm) illumination (b) Visible light (400-900 nm) for all the deposition time considered for

(a)

In UV and visible light					
Deposition time	10 min	20 min	40 min		
bare TiO ₂	0.866				
Case 1	0.896	0.940	0.931		
Case 2	0.920	0.928	0.906		
Case 3	0.870	0.954	0.952		

(b)

In Visible light					
Deposition time	10 min	20 min	40 min		
bare TiO ₂	0.366				
Case 1	0.482	0.488	0.470		
Case 2	0.460	0.471	0.452		
Case 3	0.438	0.460	0.458		

(SI-7) Linear sweep voltammetry results for case 2

Fig. S5 Linear sweep voltammetry under (a) UV and visible light illumination (b) only visible light illumination for bare TiO_2 (black), sensitized TiO_2 for different deposition time 10 min (cyan), 20 min (red) and 40 min (green) for the case 2-when surfactant is added after centrifugation

(SI-8) Photocurrent density values

Table S5. Photocurrent densities values from the Linear scan voltammetry measurements under (a) UV and visible light (250-900 nm)illumination (b) Visible light (400-900 nm) for all the deposition time considered for bare TiO_2 and for the three cases.

(a)

Photocurrent density in UV and visible light (mA cm ⁻²)					
Deposition time	10 min	20 min	40 min		
bare TiO ₂	1.833				
Case 1	2.55 ± 0.08	6 ± 0.17	4.05 ± 0.25		
Case 2	5.25 ± 0.1	6.25 ± 0.15	4.8 ± 0.4		
Case 3	4.4 ± 0.4	6.7 ± 0.15	6 ± 0.07		

(b)

Photocurrent density in Visible light (µA cm ⁻²)					
Deposition time	10 min	20 min	40 min		
bare TiO ₂	0.005				
Case 1	6.65	7.72	7.49		
Case 2	9.1	8.22	7.22		
Case 3	6.64	11.52	8.88		

(SI-9) Photocurrent action spectra for case 1 and case 2

Fig. S6 Photocurrent action spectra for bare TiO_2 (black) and sensitized TiO_2 (red) for (a) Case 1- no surfactant addition and (b) Case 2surfactant addition after centrifugation.

(SI-10) References

- 1. W.-J. An, E. Thimsen and P. Biswas, *The Journal of Physical Chemistry Letters*, 2009, 1, 249-253.
- 2. D.-R. Chen and D. Y. Pui, *Aerosol Science and Technology*, 1997, **27**, 367-380.
- 3. V. B. Shah, G. S. Orf, S. Reisch, L. B. Harrington, M. Prado, R. E. Blankenship and P. Biswas, *Analytical and bioanalytical chemistry*, 2012, **404**, 2329-2338.
- 4. M. Kato, J. Z. Zhang, N. Paul and E. Reisner, *Chemical Society Reviews*, 2014, 43, 6485-6497.
- 5. V. B. Shah, W. R. Henson, T. S. Chadha, G. Lakin, H. Liu, R. E. Blankenship and P. Biswas, *Langmuir*, 2015, **31**, 1675-1682.
- 6. R. Horst, P. Stanczak, R. C. Stevens and K. Wüthrich, *Angewandte Chemie International Edition*, 2013, **52**, 331-335.
- 7. E. J. Boekema, A. F. Boonstra, J. P. Dekker and M. Rögner, *Journal of bioenergetics and biomembranes*, 1994, 26, 17-29.