Supplementary Information for

Tensile strains give rise to strong size effects for thermal conductivities

of silicene, germanene and stanene

Y. Kuang,*^a L. Lindsay,^b S. Q. Shi^{c,d} and G. P. Zheng^c

^aCollege of Science and Engineering, Jinan University, Guangzhou, China

^bMaterials Science and Technology Division, Oak Ridge National Laboratory, Oak

Ridge, Tennessee 37831, USA

^cDepartment of Mechanical Engineering, the Hong Kong Polytechnic University, Hung

Hom, Kowloon, Hong Kong

^dHong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China

Figure S1. Calculated phonon dispersion of unstrained germanene (*d*-electron included in valence). The ground state was determined by full geometrical optimization based on

^{*}Corresponding author. Tel.: Fax: <u>+852-28315139</u>. E-mail address: <u>kuangzhang88@gmail.com(Y. Kuang)</u>

the following setup: plane wave cutoff 560 eV, 28×28 k-mesh, energy convergence tolerance of 1.0×10^{-9} , force convergence precision 1.0×10^{-6} eV/Å and a vacuum layer thickness 1.6 nm using the VASP package. We obtain an equilibrium lattice constant of 3.954 Å and a buckling height of 0.638 Å. The harmonic IFCs are calculated using a 7×7 supercell without additional neighbor cutoff, a 4×4 k-mesh and the same plane wave cutoff, energy convergence tolerance and vacuum layer thickness as those used for the optimization. Note the soft (imaginary) out-of-plane acoustic modes at low frequency.

Figure S2. Phonon dispersion of unstrained stanene based on the setups of fast Fourier transformations (FFT) grid densities NGX=360 and NGY=360 respectively for two vertical in-plane directions and NGZ=90 for the out-of-plane direction. In the manuscript the phonon dispersion of unstrained stanene (Figure 1c), the corresponding FFT grid densities are NGX=180, NGY=180 and NGZ=90. No significant difference in the ZA phonon dispersion is seen with increasing FFT grid density.

Figure S3. The thermal conductivity as a function of iterative step for silicene at ε =0.05, germanene at ε =0.02 and stanene at ε =0.035 corresponding to *q*-point grid density N_1 =301. Good convergence is achieved after 16, 64 and 27 iterations using convergence precision 1×10⁻⁵ for silicene, germanene and stanene, respectively.