Supporting Information

Electrocatalytic activity of NiO on silicon nanowires with a carbon shell and its application to dye-sensitized solar cell counter electrodes

Junhee Kim^{a,1}, Cholong Jung^{b,1}, Minsoo Kim^a, Soomin Kim^a, Yoonmook Kang^c, Hae-seok Lee^a, Jeunghee Park^d, Yongseok Jun^{e,*}, and Donghwan Kim^{a,*}

^aDepartment of Materials Science and Engineering, Korea University, Anam-dong, Seongbuk-gu, Seoul 137-713, Korea E-mail: donghwan@korea.ac.kr

^bDepartment of Chemical Engineering, UNIST, Banyeon, Ulju, Ulsan, 689-798, Korea

^cKU[·] KIST Green School, Graduate School of Energy and Environment, Korea University, Anam-dong, Seongbuk-gu, Seoul 137-713, Korea

^dDepartment of Chemistry, Korea University, Jochiwon 339-700, Korea

^eDepartment of Materials Chemistry and Engineering, Konkuk University, Hwayang, Gwangjin, Seoul 143-701, Korea E-mail: yjun@konkuk.ac.kr

¹These authors contributed equally to this work.

J-V curve scanning detail.

The JV scanning was performed at forward scanning direction, starting from 0.08 V to V_{oc} . The voltage step is 3 mV and interval time is 50 msec. Total points are around 250 depending on V_{oc} .

Figure S1. Transmission electron microscopy micrographs of a SiNW/C@NiO, and energy dispersive spectroscopy elemental mapping images of Si, Ni, O, and C.

Figure S2. Electrochemical impedance spectroscopy for full dye-sensitized solar cells using Pt, SiNW/C, and NiO@SiNW/C as the counter electrodes.

Table S1. Photovoltaic parameters of dye-sensitized solar cells based on FTO/Pt, SiNW/C, and NiO@SiNW/C counter electrodes measured under AM1.5G illumination and electrochemical impedance spectroscopy parameters fitted from the equivalent circuit.

Counter	V _{oc}	J _{sc}	FF	ŋ	R _s ^{a)}	R _{ct} ^{a)}	$Z_n^{a)}$
Electrode	[V]	[mA/cm ²]	[%]	[%]	$[\Omega \cdot cm^2]$	$[\Omega \cdot cm^2]$	$[\Omega \cdot cm^2]$
FTO/Pt	0.762	16.55	68.4	8.62	0.60	0.46	0.27
SiNW/C	0.744	17.68	65.9	8.67	0.17	0.23	0.29
NiO@SiNW/C	0.759	18.52	67.5	9.49	0.19	0.07	0.25

^{a)} Obtained from symmetric cells

Figure S3. Cyclic voltammetry curves of FTO/Pt, SiNW/C, and NiO@SiNW/C electrodes in 5×10^{-3} M K₃Fe(CN)₆/ 0.1 M KCl solution at scan rate of 50 mV s⁻¹.

Table S2. Calculated electroactive surface area values of FTO/Pt, SiNW/C, and NiO@SiNW/C electrodes.

Counter	FTO/Pt	SiNW/C	NiO@SiNW/C	
Electrode			_	
A (cm^2)	2.132	3.391	4.290	

The tested area is $1.0 \times 1.5 \text{ cm}^2$.

Figure S4. The incident photon-to-current conversion efficiencies(IPCEs) spectra for FTO/Pt, SiNW/C, and NiO@SiNW/C electrodes.

Figure S5. Raman spectra for SiNW/C and NiO@SiNW/C.

Table S2. Peak positions of D and G bands and I_D/I_G ratios.

	D band (cm ⁻¹)	G band (cm ⁻¹)	I_D/I_G
NiO@SiNW/C	1343	1599	1.58
SiNW/C	1343	1599	1.71