Electronic Supplementary Information

Causation or only correlation? Application of causal inference graphs for evaluating causality in nano-QSAR models

Natalia Sizochenko,^{a,b} Agnieszka Gajewicz,^a Jerzy Leszczynski,^b TomaszPuzyn^{*a}

^aLaboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Gdansk, Poland ^b Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Jackson State University, 1400 J. R. Lynch Street, P. O. Box 17910, Jackson, MS 39217, USA *corresponding author: <u>t.puzyn@qsar.eu.org</u>

K-means modeling

K-means clustering is founded on the approximation of each point in a dataset by the centroid of that point's cluster. K-means clustering in unsupervised learning algorithm. Hence, may be appropriate measure to estimate similarity of nanoparticles. Resulted of k-means clustering in 1D space of Wigner-Seitz radius is presented in Table S1.

Table S1. K-means clustering

Cluster 1	Cluster 2	Cluster 3	Cluster 4
CoO, CuO, NiO, ZnO	SnO ₂ , TiO ₂ , ZrO ₂ , SiO ₂	Al ₂ O ₃ , Cr ₂ O ₃ , Fe ₂ O ₃ , V ₂ O ₃	Bi ₂ O ₃ , In ₂ O ₃ , La ₂ O ₃ ,
			Sb ₂ O ₃ , Y ₂ O ₃

Cluster 1: $r_w < 0.17$; highest toxicity, MeOx.

Cluster 2: $0.17 < r_w < 0.18$; lowest toxicity, MeO₂.

Cluster 3: 0.18< $r_w < 0.20$; intermediate, Me₂O₃.

Cluster 4: $r_w < 0.20$; intermediate, Me₂O₃.