Supplemental Information

Size-controllable synthesis of Bi/Bi₂O₃ heterojunction nanoparticles using pulsed Nd:YAG laser deposition and metal-semiconductor-heterojunction-assisted photoluminescence

Ranjit A. Patil¹, Mao-Kuo Wei², P.-H. Yeh³, Jyun-Bo Liang¹, Wan-Ting Gao¹, Jin-Han Lin⁴, Yung Liou⁴, and Yuan-Ron Ma^{1,*}

¹Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan

²Department of Materials Science and Engineering, National Dong Hwa University, Hualien 97401, Taiwan

³Department of Physics, Tamkang University, Tamsui, New Taipei City 25137, Taiwan ⁴Institute of Physics, Academia Sinica, Taipei 11529, Taiwan

*Corresponding author

Yuan-Ron Ma, Professor, Department of Physics, National Dong Hwa University, No. 1, Sec. 2, Da-Hsueh Rd., Shou-Feng, Hualien 97401, Taiwan, Republic of China. Tel: +886-3-8633706. Fax: +886-3-8633690. Email: ronma@mail.ndhu.edu.tw

Figure S1. Diameter distribution. Statistical histograms of the diameter distributions of the Bi nanoparticles synthesized at substrate temperatures of 100, 125, 150, 175, 200, 225, and 250 °C, respectively. The various diameters are fitted to a log-normal distribution function. [32] The fitting parameters of the majority distribution, average diameter, and standard deviation are shown in Table 1.

Substrate	Majority diameter	Average diameter	Standard deviation
temperature	distribution	riverage diameter	Stundard de Flation
100 °C	25-40 nm	32.78 ±0.59 nm	0.21 ± 0.02
125 °C	35-65 nm	$50.71\pm0.57~\text{nm}$	0.21 ± 0.01
150 °C	40-75 nm	$59.34 \pm 1.00 \text{ nm}$	0.23 ± 0.02
175 °C	50-80 nm	$64.94\pm0.60~\text{nm}$	0.20 ± 0.01
200 °C	55-90 nm	$73.14 \pm 0.53 \text{ nm}$	0.19 ± 0.01
225 °C	60-90 nm	$75.78\pm0.29~\text{nm}$	0.17 ± 0.01
250 °C	65-100 nm	$84.20\pm0.38~\text{nm}$	0.17 ± 0.01

Table 1. The majority diameter distribution, average diameters, and standard deviations of the Bi nanoparticles synthesized at various substrate temperatures for the statistical histograms (see Fig. S1, Supporting Information).

Figure S2. Photoluminescence (PL). Room-temperature PL spectra of (a) the Si substrate and the Bi/Bi_2O_3 heterojunction nanoparticles synthesized at substrate temperatures of (b) 100, (c) 150, and (d) 250 °C, respectively.

Figure S3. Band structures of metal-semiconductor heterojunctions. There are two kinds of metal-semiconductor heterojunctions, Schottky and Ohmic contacts. However, there are only two types of semiconductors, *n*- and *p*-types, giving four varying metal-semiconductor heterojunctions.