Supplementary Information

Facile one-pot surfactant-free synthesis of uniform Pd₆Co nanocrystals on 3D graphene as an efficient electrocatalyst toward formic acid oxidation

Lian Ying Zhang^{a,b,c}, Zhi Liang Zhao^{a,b}, Weiyong Yuan^{a,b} and Chang Ming Li^{a,b,c*}

^a Institute for Clean Energy & Advanced Materials, Faulty of Materials and Energy, Southwest University, Chongqing 400715, P. R. China. Email: ecmli@swu.edu.cn

^b Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing 400715, P. R. China.

^c Institute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou 215011, P. R. China

Experimental Section

Synthesis of 3D graphene (3DG)

Firstly, the graphene oxide was synthesized using a modified Hummers method.^{1,2} The prepared graphene oxide was dried at 60°C for 10h and then put into a sealed glass bottle under high vacuum level at 70°C overnight, followed by heating to 230°C quickly. The obtained highly loose black powder was denoted as three-dimensional graphene.

Synthesis of 3DG supported Pd₆Co electrocatalyst

To synthesize electrocatalysts, 15mg 3DG, Pd(acac)₂ and Co(ac)₂ were added in 25 mL of ethylene glycol. The mixture was treated in an ultrasonic bath for one hour, and then continuous stirred overnight. The mixed solution was placed in a 50 mL Teflon-sealed autoclave and maintained at 260°C for 10 h under high-purity argon protection, followed by centrifugation and washing for three cycles. After oven-dried at 70°C for more than 6 h, the obtained sample was denoted as Pd₆Co/3DG, Pd₃Co/3DG, PdCo/3DG and Pd/3DG, respectively. The Pd and Co atomic ratio can be tuned by controlling the amount of Pd and Co precursors. Pd/C was also prepared under the same approach except using XC-72 carbon instead of 3DG.

Synthesis of reduced graphene oxide (RGO) sheets supported Pd_6Co catalyst

Typically, 25 ml graphene oxide (4mg/ml) aqueous dispersion was transferred into 50 ml Teflon-sealed autoclave and maintained at 180°C for 12 h. After the autoclave was naturally cooled to room temperature, the RGO was obtained by a freeze-drying method. Then the Pd₆Co/RGO and Pd/RGO were prepared with the same procedure of Pd₆Co/3DG except using reduced graphene oxide instead of 3DG.

Physicochemical Characterization

The morphology and nanostructure of prepared samples were obtained on scanning electron microscope (SEM, JSM-7800F) and transmission electron microscope (TEM, JEOL JEM2100). Elements distribution of synthesized nanoparticle was detected by highly sensitive Super-X energy dispersive X-ray (EDX) detector system with high angle annular dark field scanning transmission electron microscope (HAADF-STEM, Titan G2 60-300). The crystal structure was characterized by powder X-ray diffraction (XRD, XRD-7000). The weight and composition of simples were carried out using thermogravimetric analysis (TGA-Q50) and inductively coupled plasma atomic emission spectrometric (ICP-AES, iCAP 6300 Duo). Nitrogen adsorption-desorption experiments were carried out at 77.3K by using an automated gas sorption system (Quantachrome Instruments, 2QDS-MP-30). Contact angle was studied on JC2000D drop meter and X-ray photoelectron spectroscopy (XPS) measurements were performed with Thermo Scientific ESCALAB 250Xi X-Ray Photoelectron Spectrometer.

Electrochemical Measurements

Electrochemical characterizations were carried out in a three-electrode electrochemical cell using a saturated calomel electrode (SCE) and a platinum foil as the reference and counter electrode, respectively. Catalyst ink was prepared by ultrasonically mixing catalysts (4 mg), ethanol (1 ml) and Nafion solutions (50 μ l, 5 wt %), then 6 μ l ink was pipetted and spreaded onto a prepolished glass carbon (GC) disk electrode (4 mm diameter, 0.126 cm²) followed by drying for 15 min as the working electrode for measurements.

Cyclic voltammetry (CV) curves were measured in N₂-saturated 0.5 M H₂SO₄ and/or 0.5 M H₂SO₄ + 0.5 M HCOOH at 50 mV s⁻¹. Chronopotentiometry curves were obtained in 0.5 M H₂SO₄ + 0.5 M HCOOH. All electrochemical experiments were performed at $25\pm1^{\circ}$ C.

Figure S1. XPS spectrum of prepared 3DG materials.

Figure S2. SEM image of prepared Pd/3DG materials.

Figure S3. Ethylene glycol contact angle of XC-72 Carbon (a) and 3D graphene (b), respectively.

Obviously, 3D graphene materials exhibit smaller ethylene glycol contact angle than that of XC-72 Carbon, indicating its better ethylene glycol-philicity.

Figure S4. EDAX mapping images of Pd and Co elements distribution of a Pd₆Co nanoparticle.

Figure S5. The high-resolution XPS spectrum of Co2p of Pd₆Co/3DG.

Figure S6. (a) Nyquist plots of various Pd-based catalysts. (b) chronoamperometric (CA) curves of various Pd-based catalysts in 0.5 M H_2SO_4 + 0.5 M HCOOH at 0.1 V. (c) CV curves of Pd₆Co/3DG and commercial Pd-C catalysts before and after repeated cycling (500 cycles, from -0.25V to 0.95V at 50 mV s⁻¹)

Figure S7. (a) CV curves of formic acid oxidation for $Pd_6Co/3DG$, Pd_6Co/RGO and Pd/RGO catalysts in 0.5 M $H_2SO_4 + 0.5$ M HCOOH at 50 mV s⁻¹. (b) Nyquist plots of $Pd_6Co/3DG$, Pd_6Co/RGO and Pd/RGO catalysts. (c) CA curves of $Pd_6Co/3DG$, Pd_6Co/RGO and Pd/RGO catalysts in 0.5 M $H_2SO_4 + 0.5$ M HCOOH at 0.1 V.

Figure S8. (a) CV curves of formic acid oxidation for $Pd_6Co/3DG$, $Pd_3Co/3DG$ and PdCo/3DG catalysts in 0.5 M $H_2SO_4 + 0.5$ M HCOOH at 50 mV s⁻¹. (b) The catalytic peak current density of various Pd-based catalyst including $Pd_6Co/3DG$, $Pd_3Co/3DG$, PdCo/3DG and Pd/3DG.

References

W. S. Hummers Jr, R. E. Offeman, J. Am. Chem. Soc., 1958, 80, 1339-1339.
J. Zhang, Z. Xiong, X. Zhao, J. Mater. Chem., 2011, 21, 3634-3640.