Metal coordination polymer derived mesoporous Co_3O_4 nanorods with uniform TiO_2 coating as advanced anodes for lithium ion batteries

Hongbo Geng,^{a,b} Huixiang Ang,^b Xianguang Ding,^c Huiteng Tan,^b Guile Guo,^b Genlong Qu,^a Yonggang Yang,^a Junwei Zheng,^{a,d} Qingyu Yan^{*b} and Hongwei Gu^{*a}

^aKey Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China.

E-mail: hongwei@suda.edu.cn

^bSchool of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore. E-mail: alexyan@ntu.edu.sg

^ci-Lab and Division of Nanobiomedicine, Suzhou Institute of Nano-tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China.

^dCollege of Physics, Optolectronics and Energy, Soochow University, Suzhou, 215006, China.

Fig. S1 SEM and TEM images of Co-NA (A-C), Co-NA@PDA (D-F), Co-NA@PDA@TiO2 (G-

I).

Fig. S2 XRD pattern of the pure Co_3O_4 .

Fig. S3 The SEM image and corresponding EDS line scanning profiles of Co, O and Ti in the $Co_3O_4@TiO_2$ composite.

Fig. S4 The XPS survey spectrum of the Co_3O_4 @TiO₂ yolk-shell nanorods.

Fig. S5 The XPS high-resolution spectra of the O 1s of the Co_3O_4 @TiO₂ yolk-shell nanorods.

Fig. S6 Cyclic voltammogram (CV) profile of the Co₃O₄@TiO₂ yolk-shell nanorods.

Fig. S7 The electrochemical impedance spectroscopy plots for the Co_3O_4 and the $Co_3O_4@TiO_2$ electrodes before cycling and the corresponding fitted equivalent circuit model (inset).

Fig. S8 The SEM images of the Co₃O₄@TiO₂ electrode after 100 cycles at the current density of 200 mA g^{-1} .

Table S1. Comparison of specific capacities of the current $Co_3O_4@TiO_2$ core-shell electrode with other hybrid electrode materials reported in literature.

Materials	Current density	Cycle number	Specific capacity (mA h g ⁻¹)	Ref.
Fe ₃ O ₄ nanoparticle-decorated TiO ₂ nanofiber	100 mA/g	100	about 454 mA h g ⁻¹	1
Graphene wrapped TiO ₂ @Co ₃ O ₄ nanobelt	100 mA/g	100	about 437 mA h g ⁻¹	2
Co ₃ O ₄ /TiO ₂ hierarchical heterostructures	200 mA/g	100	about 600 mA h g ⁻¹	3
CuO@TiO2 nanocables	60 mA/g	50	about 663 mA h g ⁻¹	4
Sandwich-like Co ₃ O ₄ /TiO ₂	100 mA/g	100	about 800 mA h g ⁻¹	5

composite				
Mn ₂ O ₃ @TiO ₂ cube	100 mA/g	30	about 449 mA h g ⁻¹	6
α -Fe ₂ O ₃ @SnO ₂ nanorattles	200 mA/g	30	about 419 mA h g ⁻¹	7
Graphene-based TiO ₂ /SnO ₂ nanosheet	160 mA/g	100	about 600 mA h g ⁻¹	8
SnO ₂ /TiN nanoparticles	78.1 mA/g	50	about 404 mA h g ⁻¹	9
Carbon coated TiO ₂ nanosheets decorated with Fe ₃ O ₄ nanoparticles	200 mA/g	20	about 742 mA h g ⁻¹	10
TiO ₂ coated Mn ₃ O ₄ nanorods	200 mA/g	20	about 690 mA h g ⁻¹	11
NiO/TiO ₂ nanosheets	200 mA/g	100	about 541 mA h g ⁻¹	12
Co ₃ O ₄ @TiO ₂ core-shell nanorods	200 mA/g	100	about 803 mA h g ⁻¹	Current study

References:

- H. G. Wang, G. S. Wang, S. Yuan, D. L. Ma, Y. Li and Y. Zhang, *Nano Res.*, 2015, 8, 1659-1668.
- 2. Y. S. Luo, J. S. Luo, W. W. Zhou, X. Y. Qi, H. Zhang, D. Y. W. Yu, C. M. Li,

H. J. Fan and T. Yu, J. Mater. Chem. A, 2013, 1, 273-281.

H. G. Wang, D. L. Ma, X. L. Huang, Y. Huang and X. B. Zhang, *Sci. Rep.*, 2012, 2, 701.

4. A. Li, H. H. Song, X. H. Chen, J. S. Zhou and Z. K. Ma, ACS Appl. Mater. Interfaces, 2015, 7, 22372-22379.

 W. T. Li, K. N. Shang, Y. M. Liu, Y. F. Zhu, R. H. Zeng, L. Z. Zhao, Y. W.
Wu, Lin Li, Y. H. Chu, J. H. Liang and G. Liu, *Electrochim. Acta*, 2015, **174**, 985-991. X. Q. Chen, H. B. Lin, X. W. Zheng, X. Cai, P. Xia, Y. M. Zhu, X. P. Li and
W. S. Li, J. Mater. Chem. A, 2015, 3, 18198-18206.

7. J. S. Chen, C. M. Li, W. W. Zhou, Q. Y. Yan, L. A. Archer and X. W. Lou, *Nanoscale*, 2009, **1**, 280-285.

8. Y. P. Tang, D. Q. Wu, S. Chen, F. Zhang, J. P. Jia and X. L. Feng, *Energy Environ. Sci.*, 2013, **6**, 2447-2451.

 M. M. Liu, X. W. Li, H. Ming, J. Adkins, X. M. Zhao, L. L. Su, Q. Zhou and J. W. Zheng, *New J. Chem.*, 2013, 37, 2096-2102.

 H. Xu, X. D. Zhu, K. N. Sun, Y. T. Liu and X. M. Xie, *Adv. Mater. Interfaces*, 2015, **2**, 1500239.

11. N. N. Wang, J. Yue, L. Chen, Y. T. Qian and J. Yang, ACS Appl. Mater. Interfaces, 2015, 7, 10348-10355.

12. G. J. Li, H. Hu, Q. C. Zhu and Y. Yu, RSC Adv., 2015, 5, 101247-101256.