Design of multi-shell $\mathrm{Fe}_{2} \mathrm{O}_{3} @ \mathrm{MnO}_{\mathbf{x}} @$ CNTs for the Selective Catalytic Reduction of $\mathbf{N O}$ with $\mathbf{N H}_{3}$: improvement of catalytic activity and SO_{2} tolerance
 Sixiang Cai, ${ }^{a}$ Hang Hu, ${ }^{b}$ Hongrui Li, ${ }^{b}$ Liyi Shi ${ }^{a b}$ and Dengsong Zhang*ab
 ${ }^{\text {a.School of Material Science and Engineering, Shanghai University, Shanghai 200072, China. Fax: }}$
 +86-21-66136079; Tel: +86-21-66136081; E-mail: dszhang@shu.edu.cn
 b. Research Center of Nano Science and Technology, Shanghai University, Shanghai 200444, China.

Part I. Experimental details of the Fe-Mn@CNTs IM

The multi-walled CNTs were purchased from Qinghuangdao Tai Chi Ring Nano Product Co. Ltd (China). Before use, the CNTs were refluxed in $80 \% \mathrm{HNO}_{3}$ aqueous solution at $140{ }^{\circ} \mathrm{C}$ for 6 h , washed with deionized water to remove residual HCl , and then dried at $80^{\circ} \mathrm{C}$ overnight.

The Fe-Mn@CNTs IM was prepared by an impregnation method for comparison. In a typical synthesis, according to the obtained molar percentage of Fe@Mn@CNTs catalysts by the XPS and the weight percentage by TGA analysis, 1.30 mmol of Manganese (II) nitrate hexahydrate, 1.88 mmol of Iron(III) nitrate nonahydrate and 200 mg of CNTs were dispersed in 40 ml deionized water with ultrasonic treatment for 30 min . After that, the mixed solution was dried at $60^{\circ} \mathrm{C}$ for 20 h under stirring. Finally, the products were calcined in N_{2} stream at $450{ }^{\circ} \mathrm{C}$ for 4 h with a ramping rate of $2{ }^{\circ} \mathrm{C} / \mathrm{min}$.

Table S1. Texture properties of the catalysts

sample	Specific surface $\left(\mathrm{m}^{2} \mathrm{~g}^{-1}\right)^{a}$	$\begin{gathered} \text { pore size } \\ (\mathrm{nm})^{a} \end{gathered}$	pore volume $(\mathrm{cc} / \mathrm{g})^{a}$	metal oxides loading $(\mathbf{w t} \%)^{b}$
Mn@CNTs	169.4	3.65	0.44	61.3\%
Fe@Mn@CNTs	167.0	3.63	0.45	59.0\%
Fe@CNTs	177.6	3.83	0.48	59.2\%
Determined by N_{2} desorption measurements Determined by TGA analysis				

Fig.S1 (a) TEM image and (b) the magnified image of Fe@CNTs.

Fig. $\mathbf{S 2} \mathrm{NH}_{3}$-SCR performances of catalysts. Reaction conditions: $\left[\mathrm{NH}_{3}\right]=[\mathrm{NO}]=550 \mathrm{ppm},\left[\mathrm{O}_{2}\right]$ $=5 \mathrm{vol} . \%, \mathrm{~N}_{2}$ as balance gas, GHSV $=20000 \mathrm{~h}^{-1}$.

Fig.S3 a) Stability test of the catalysts at $210^{\circ} \mathrm{C}$ and b) stability test of $\mathrm{Fe} @ \mathrm{Mn} @ \mathrm{CNTs}$ at $90^{\circ} \mathrm{C}$.

Fig.S4 XRD patterns of the catalysts after the stability test.

Fig. $\mathbf{S 5} \mathrm{H}_{2} \mathrm{O}$ resistance test of the catalysts.

