Supporting Information

A Co₃O₄-embedded porous ZnO rhombic dodecahedron prepared using zeolitic imidazolate frameworks as precursors for CO₂ photoreduction

Tao Wang,^{*ab} Li Shi,^a Jing Tang,^a Victor Malgras,^a Shunsuke Asahina,^c Guigao Liu,^a Huabin Zhang,^a Xianguang Meng,^a Kun Chang,^a Jianping He,^b Osamu Terasaki,^d Yusuke Yamauchi,^{ae} and Jinhua Ye^{*aef}

^a World Premier International Research Center for Materials Nanoarchitectonics, National

Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan

^b College of Materials Science and Technology, Jiangsu Key Laboratory of Materials and

Technology for Energy Conversion, Nanjing University of Aeronautics and Astronautics,

Nanjing 210016, P. R. China

° JEOL Ltd., SM Business Unit, Tokyo, Japan

^d Department of Materials and Environmental Chemistry, Berzelii Centre EXSELENT on

Porous Materials, Stockholm University, SE-10691 Stockholm, Sweden

^e TU-NIMS Joint Research Center, School of Materials Science and Engineering, Tianjin

University, 92 Weijin Road, Tianjin, 300072, P.R. China

^fCollaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, P.R. China

*Corresponding Author: <u>wangtao0729@nuaa.edu.cn</u>, <u>Jinhua.YE@nims.go.jp</u>

Fig. S1 (a,b) TG and DTA curves of ZIF-8 recorded in air (one-step calcination). (c,d) TG and DTA curves of ZIF-8@ZIF-67 recorded in N_2 (the first-step calcination in a N_2 atmosphere); (e,f) TG and DTA curves of ZIF-8@ZIF-67 recorded in air (the second-step calcination in an air atmosphere).

Fig. S2 TEM image of (a) ZnO-2 prepared from ZIF-8 *via* one-step calcination in an ambient atmosphere, (b) $ZnO@Co_3O_4$ precursor prepared from the core-shell ZIF-8@ZIF-67 crystals in a tubular furnace at 400 °C for 2 h under a N₂ atmosphere at a heating rate of 1 °C min⁻¹ to obtain.

Fig. S3 High resolution XPS centered on (a) Co 2p and (b) Zn 2p for the ZIFs derived samples.

Fig. S4 (a) SEM, (b) TEM, and (C) high resolution TEM images of ZIF-8 derived ZnO.

Fig. S5 (a) SEM , (b) TEM and (c) high resolution TEM of ZIF-8@ZIF-67 derived $ZnO@Co_{3}O_{4}.$

Fig. S6 (a, b) SEM images of ZIF-67, (c, d) SEM, (e) TEM, and (f) high resolution TEM images of ZIF-67 derived Co_3O_4 .

Fig. S7 (a) TEM and (b) high resolution TEM images of the commercial ZnO.

Fig. S8 (a) N_2 adsorption-desorption isotherms and (b) pore size distribution of the ZIFs derived samples and the commecial ZnO.

Fig. S9 GC-MS spectra of the products (a) CO and (b) CH_4 of photocatalytic ${}^{13}CO_2$ reduction over $ZnO@Co_3O_4$ after 12 h irradiation.

Fig. S10 (a) XRD patterns ($\lambda = 0.15418$ nm) of ZnO@Co₃O₄-400, ZnO@Co₃O₄-500 and (c,d) ZnO@Co₃O₄-600.

Fig. S11 TEM images of (a,b) $ZnO@Co_3O_4$ -500 and (c,d) $ZnO@Co_3O_4$ -600 prepared from ZIF-8@ZIF-67.

Fig. S12 (a) N_2 adsorption-desorption isotherms and (b) pore size distribution of $ZnO@Co_3O_4-400$, $ZnO@Co_3O_4-500$ and (c,d) $ZnO@Co_3O_4-600$.

Fig. S13 (a) CO and (b) CH₄ evolution of $ZnO@Co_3O_4-400$, $ZnO@Co_3O_4-500$ and $ZnO@Co_3O_4-600$ under UV-vis irradiation.

(a) ZnO

$$ZnO + 2h^+ + H_2O \longrightarrow ZnO + +1/2O_2 + 2H^+$$
 (1)

$$CO_2 + 8e^- + 8H^+ \longrightarrow CH_4 + 2H_2O$$
 (2)

$$CO_2 + 2e^- + 2H^+ \longrightarrow CO + H_2O$$
(3)

$$ZnO + 2h^+ \longrightarrow Zn^{2+} + 1/2O_2$$
 (4)

$$2CO_2 + 2e^- + Zn^{2+} \longrightarrow ZnCO_3 + CO$$
(5)

(b) ZnO@Co₃O₄

$$ZnO + 2h^+ + Co_3O_4 + H_2O \longrightarrow ZnO + Co_3O_4 + 1/2O_2 + 2H^+$$
 (6)

$$CO_2 + 8e^- + 8H^+ \longrightarrow CH_4 + 2H_2O$$
 (2)

$$CO_2 + 2e^- + 2H^+ \longrightarrow CO + H_2O$$
(3)

Fig. S14 Proposed reaction equations for the photoreduction of CO_2 with (a) ZnO and (b) ZnO@Co₃O₄ under UV-vis irradiation.

Catalyst	S _{BET} (m ² g ⁻¹)	V _{total} (cm ³ g ⁻¹)	Average pore size (nm)
Commercial ZnO	1.65	0.0022	5.4
ZnO	29.3	0.100	13.6
ZnO@Co ₃ O ₄ -400	25.0	0.104	16.7
Co ₃ O ₄	11.3	0.041	14.6
ZnO@Co ₃ O ₄ -500	11.5	0.034	11.9
ZnO@Co ₃ O ₄ -600	1.80	0.0063	14.1

Table S1 Structural parameters of the ZIFs derived samples and the commecial ZnO.

Table S2 Summary of the various photocatalytic systems employed for CO_2 reduction.

Catalyst	Co-catalyst	Light source	Conditions	Major products	Rate (µmol g ⁻¹ h ⁻¹)	Ref.
ZIF derived ZnO	Co ₃ O ₄	UV-Vis light: 300 W Xe lamp	CO ₂ and H ₂ O vapor	CH ₄ CO	0.99 6.51	This work
Zn ₂ GeO ₄ nanobelt	1 wt % Pt and 1 wt % RuO2	UV-Vis light: 300 W Xe lamp	CO ₂ and H ₂ O vapor	CH ₄	0.025	1
Anatase TiO_2 rods with $\{010\}$ facets	1 wt% Pt	UV-Vis light: 300 W Xe lamp	CO_2 and H_2O vapor	CH ₄	0.0057	2
Hollow anatase TiO ₂ single crystals with {101} facets	1 wt% RuO2	UV-Vis light: 300 W Xe lamp	CO_2 and H_2O vapor	CH_4	0.0017	3
Leaf-architectured SrTiO ₃	1 wt % Au	UV-Vis light: 300 W Xe arc lamp	CO_2 and H_2O vapor	CH ₄ CO	0.28 0.35	4
NaTaO ₃	1 wt % Au	UV-Vis light: 200 W Hg-Xe arc lamp	CO ₂ and H ₂ O vapor	CH ₄ CO	0.036 0.17	5
NaNbO ₃ with cubic– orthorhombic surface-junctions	0.5 wt% Pt	UV-Vis light: 300 W Xe lamp	CO_2 and H_2O vapor	CH_4	5.94	6
Cubic NaNbO ₃	0.5 wt% Pt	UV-Vis light: 300 W Xe lamp	CO2 and H2O vapor	CH_4	5.31	7
Cubic NaNbO ₃	0.5 wt% Pt	UV-Vis light: 300 W Xe lamp	CO_2 and H_2O vapor	CH ₄	4.86	8
TiO ₂	3 wt% NaOH	UV-Vis light: 300 W Xe lamp	CO ₂ and H ₂ O vapor	CH_4	8.77	9

TiO ₂ Nanosheets Exposed with 95% {100} Facets	1 wt% Pt	UV-Vis light: 300 W Xe lamp	CO_2 and H_2O vapor	CH ₄	0.011	10
Micro/mesoporous Zn ₂ GeO ₄	1 wt% Pt	UV-Vis light: 300 W Xe lamp	CO ₂ and H ₂ O vapor	CH_4	0.412	11
Titania Nanosheets and Graphene Nanosheets	-	UV-Vis light: 300 W Xe lamp	CO_2 and H_2O vapor	CH ₄ CO	1.14 8.91	12
Mesoporous Zn ₂ GaO ₄	1 wt% RuO2	UV-Vis light: 300 W Xe lamp	CO_2 and H_2O vapor	CH_4	2.59	13
Ordered mesoporous TiO ₂	-	UV-Vis light: 300 W Xe arc lamp	CO_2 and H_2O vapor	CH ₄ CO	0.15 0.19	14

- Q. Liu, Y. Zhou, J. Kou, X. Chen, Z. Tian, J. Gao, S. Yan and Z. G. Zou, J. Am. Chem. Soc., 2010, 132, 14385–14387.
- J. Pan, X. Wu, L. Wang, G. Liu, G. Q. Lu and H. M. Cheng, Chem. Commun., 2011, 47, 8361–8363.
- W. Jiao, L. Wang, G. Liu, G. Q. Lu and H. M. Cheng, ACS Catal., 2012, 2, 1854– 1859.
- 4. H. Zhou, J. Guo, P. Li, T. X. Fan, D. Zhang and J. H. Ye, Sci. Rep., 2013, 3, 1667.
- 5. H. Zhou, P. Li, J. Guo, R. Yan, T. Fan, D. Zhang and J. Ye. Nanoscales, 2015, 7, 113–120.
- 6. P. Li, H. Xu, L. Liu, T. Kako, N. Umezawa., H. Abe and J. Ye, J. Mater. Chem. A, 2014, 2, 5606-5609.
- P. Li, S. Ouyang, Y. Zhang, T. Kako and J. Ye, J. Mater. Chem. A, 2013, 1, 1185-1191.
- P. Li, S. Ouyang, G. Xi, T. Kako and J. Ye, J. Phys. Chem. C, 2012, 116 (14), 7621– 7628.
- 9. X. Meng, S. Ouyang, T. Kako, P. Li, Q. Yu, T. Wang and J. Ye, Chem. Commun., 2014, 50, 11517-11519.
- 10. H. Xu, S. Ouyang, P. Li, T. Kako and J. Ye, ACS Appl. Mater. Interfaces, 2013, 5(4), 1348–1354.
- 11. N. Zhang, S. Ouyang, P. Li, Y. Zhang, Guangcheng Xi, T. Kako and J. Ye, Chem. Commun., 2011,47, 2041-2043.
- 12. W. Tu, Y. Zhou, Q. Liu, Z. Tian, J. Gao, X. Chen, H. Zhang, J. Liu, Z. Zou, Adv. Funct. Mater., 2102, 22(6), 1215-1221.
- S. C. Yan, S. X. Ouyang, J. Gao, M. Yang, J. Y. Feng, X. X. Fan, L. J. Wan, Z. S. Li, H. H. Ye, Y. Zhou, Z. G. Zou,, Angew. Chem. Int. Ed., 2010, 49(36), 6400-6404.
- 14. T. Wang, X. Meng, P. Li, S. Ouyang, K. Chang, G. Liu, Z. Mei and J. Ye, Nano Energy, 2014, 9, 50–60.