Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

Abdul Hakeem ^{b, d}, Fouzia Zahid ^b, Ruixue Duan ^b, Mohammad Asif ^b, Tianchi Zhang ^b, Zhenyu Zhang ^b, Yong Cheng ^b, Xiaoding Lou ^b, Fan Xia ^{†a, b & c}

^{*d.*} Lasbela University of Agriculture, Water and Marine Sciences Uthal, Pakistan.

All Correspondence to Fan Xia: xiafan@hust.edu.cn

^{a.} Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Huazhong University of Science and Technology, Wuhan 430074, China

^{b.} School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

^{c.} Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Fabricated Materials	BET surface Area (m²/g)	Pore Size (nm)	Pore Volume (cm ³ /g)	ζ- Potential (mV)
MSPs	932	3.64	0.92	-27.43
NH ₂ -MSPs	857	2.97	0.79	16.80
COOH-MSPs	694	2.72	0.72	-35.83
CLS-MSPs	486			0.509

Table S1: BET surface area, pore size, pore volume and ζ - Potential of different synthesized nanoparticles.

Figure S1: N_2 -adsorption/desorption Isotherms of different synthesized nanoparticles (A) N_2 -adsorbed/desorbed by MSPs (B) N_2 - adsorbed/desorbed by NH₂-MSPs (C) N_2 - adsorbed/desorbed by COOH-MSPs (D) N_2 - adsorbed/desorbed by DOX/CLS-MSPs.

Figure S2: The pore size, pore volume and surface area column distribution of synthesized mesoporous nanoparticles. (A) Pore size distribution of MSPs, NH₂-MSPs, and COOH-MSPs (B) Pore volume distribution of MSPs, NH₂-MSPs, and COOH-MSPs (C) The surface area distribution of MSPs, NH₂-MSPs, COOH-MSPs and DOX/CLS-MSPs

Figure S3: Absorbance comparison; absorbance of initial DOX concentration before soaking by MSPs (red line), absorbance of remaining DOX concentration after soaking by MSPs (blue line). The drug loading efficiency of MSPs was about 42 μ mol/g of SiO₂.

ABBREVIATIONS

MSPsMesoporous Silica Nanoparticles
DOXDoxorubicin. HCl
APTES3-aminopropyl trimethoxysilane
NH2-MSPsAPTES modified mesoporous silica nanoparticles
COOH-MSPsSuccinic anhydride modified/carboxylated mesoporous silica
CLS-MSPsCellulose conjugated mesoporous silica nanoparticles
DOX/CLS-MSPs Doxorubicin encapsulated cellulose conjugated mesoporous ilica nanoparticles.
ATT 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium promide.
GAThermogravimetric Analysis
TEMTransmission Electron Microscope
KRD X-ray Diffraction