Supplementary Information

Sea Urchin-like Cobalt-Iron Phosphide Nanostructures as an Efficient Catalyst for the Oxygen Evolution Reaction

Adriana Mendoza-Garcia⁺, Dong Su[§] and Shouheng Sun^{+,*}

*To whom correspondence should be addressed. Email: shouheng_sun@brown.edu

Affiliations:

[†]Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA.

[§]Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA.

Chemicals and Materials: Fe(acac)₃, Co(acac)₂ (acac =acetylacetonate), oleylamine (OAm, >70%), oleic acid (OAc), benzyl ether (BE, >98%), 1-octadecene (ODE, 90%) hexane, ethanol and Nafion (5%) were purchased from Sigma Aldrich. Sodium oleate (90%) was from Spectrum Chemicals. Trioctylphosphine (97%) was from Strem Chemicals and the commercial C-Ir catalyst (20% on Vulcan XC-72) was from Premetek.

Instrumentation: Transmission electron microscopy (TEM) and high resolution TEM (HRTEM) samples were prepared by depositing a drop of diluted nanoparticle (NP) dispersion in hexane on formvar/carbon coated copper grids. Standard TEM images were obtained from a Philips CM20 operating at 200 kV. TEM with a field-emission electron source and Scanning TEM analyses were obtained on a Hitachi HD2700C (200 kV) with a probe aberration-correction at Brookhaven National Laboratory. HRTEM images were obtained from a JEOL 2010 with an S2 accelerating voltage of 200 kV. Metal components within NPs were analyzed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) on a JY2000 Ultrace ICP Atomic Emission Spectrometer equipped with a JY AS 421

autosampler and 2400g/mm holographic grating, and the mass ratios were converted into atomic ratios. Electrochemical measurements were carried out on an Autolab potentiostat from Metrohm Instrument Company (Autolab 302). A three-electrode system consisting of a glassy carbon (GC) working electrode (5-mm in diameter), an Ag/AgCl reference electrode (in 4 M KCl) and a platinum wire counter electrode, was used.

Catalyst Preparation: The as-synthesized NPs were mixed with Ketjen-300 J carbon at a weight ratio of 1:1 in 20 mL mixture of hexane and sonicated for 1 h. The C-NPs were washed first with hexane and then with ethanol (twice for each step) and finally separated from the solvents by centrifugation. The C-NPs (both as-made C-NPs and commercial C-Ir) were suspended in a mixture of deionized water, isopropanol and Nafion (V/V/V=4/1/0.05) to form a catalyst ink (2 mg/ml). The glassy carbon (GC) rotating disk electrode (RDE) was polished by 0.1 μ m and 0.05 μ m alumina powder and rinsed with deionized water, followed by sonication in ethanol and deionized water. Unless specified, for each measurement, 20 μ L of the catalyst ink was deposited on the GC working electrode and dried at ambient conditions.

Electrochemical Measurements: All potentials reported on this paper are referenced to the reversible hydrogen electrode (RHE) potential. The 0 V point *vs* RHE was calibrated by measuring HOR/HER currents on the Pt electrode, where the potential at zero current corresponds to 0 V. Cyclic voltammograms (CVs) were obtained by scanning between 0.1 V to 1.5 V at a scan rate of 50 mV/s in N₂-saturated solution. OER polarization curves were obtained by linear sweep voltammetry scanning from 0.9 V to 2 V at a scan rate of 10 mV/s in N₂-saturated 0.1 M KOH with RDE at 1600 rpm.

Table S1. OER acti	ivities of Co-, Fe	e-, CoFe-, and	Ir-based oxide/	phosphide catalysts
--------------------	--------------------	----------------	-----------------	---------------------

Catalyst	V (vs. RHE) at	Electrolyte	Reference	
	10 mA/cm ²			
Co _x O _y /NC	1.66 V	0.1 M KOH	Angew. Chem. Int. Ed. 2014, 53, 8508	
Mesoporous Co ₃ O ₄ -35	1.76 V	0.1M KOH	Nano Res 2013, 6, 47-54	
Co ₃ O ₄ shell/Au core NPs	1.62 V	0.1 M KOH	Adv. Mater. 2014, 26, 3950-3955	
	1.56 V	1 M KOH		
	(5.9 nm NPs)		LDL	
	1.59 V	1 M KOH	15072 Notice concentration of electrolyte	
CO_3O_4 INPS / INI IOalli	(21 nm NPs)			
	1.61 V	1 M KOH		
	(46 nm NPs)			
Co ₃ O ₄ / N-graphene	1.63 V	0.1 M KOH	Nat. Mat. 2011, 10, 780-786 Notice concentration of electrolyte	
Co_3O_4/N -graphene + Ni	1 54 V	1 M OH		
foam	1.54 V	1 MI OII		
FeO(OH)/PtO substrate	1.76 V	0.1 M KOH	Nat. Mat.2012, 11, 550–557 Note: At 10 mA cm ² the V will be even higher.	
	(5 mA/cm^2)			
CoO(OH)/PtO substrate	1.68 V	0.1 M KOH		
	(5 mA/cm^2)			
Co_3O_4 -CoFe ₂ O ₄	1.73 V	0.1 M KOH	<i>Chem Mater</i> 2013 , <i>25</i> , 4926-4935.	
mesoporous composite	1.70 V		<i>J Am Chem Soc</i> 2014 , 136, 17530-6.	
$\frac{\text{Crystalline CoFe}_2O_4}{\text{Amorphous CoFe}_2O_4}$	1.79 V			
Amorphous $CoFe_2O_4$	1./2 V			
CoFe ₂ O ₄ /graphene	1.05 V	0.1 M KOH	J. Power Sources, 2014, 230, 196	
(Electrodenesited)	1.60 V	1 M NaOH	J. Am. Chem. Soc., 2013, 153, 169//	
$C_{0}E_{0} = O_{1}/(T_{0}T_{0})$	1 58 V		Int I Hud Engrou 1000 24 433	
100/Ni support	1.30 V		Notice concentration of electrolyte	
Co/Fe oxide 64	1 73 V			
Co/Fe oxide 32	1.73 V		Chem Mater 2014 26 3162-3168	
Co/Fe oxide 16	1.75 V 1.74 V	0.1 M KOH	Note: Fe-doped Co_3O_4 (hard templating). Number corresponds to ratios.	
Co/Fe oxide 7	1.74 V	0.1 M KOH		
Co/Fe oxide 3	1.70 V	0.1 M KOH		
Co/Fe oxide 1	1.05 V	0.1 M KOH		
IrO ₂ NPs	>1.70 V	0.1 M KOH	I Phys Chem Lett 2012 3 399	
IrO ₂ /C	1.60 V		Nat Commun 2013 4 1 7	
IrO ₂ /C	1.00 V	0.1 WI KOII	<i>Nut Commun.</i> 2013, <i>4</i> , 1-7	
IrO_2 thin IIIm	1.03 V	0.1 M KOH	Science 2011 , <i>334</i> , 1383-1385	
	\sim 18 mA/cm ²			
CoP nanorods/C	1.55 V	1 M KOH	ACS Catal. 2015, 5, 6874-6878	
Commercial C-Ir (Premetek)	1.62 V	0.1 M KOH	This work	
CoO/C nanocubes	1.74 V	0.1 M KOH	This work	
Fe ₃ O ₄ /C nanocubes	1.91 V	0.1 M KOH	This work	
Co _{1.32} Fe _{1.68} O ₄ /C nanocubes	1.70 V	0.1 M KOH	This work	
Co ₂ P/C NPs	1.66 V	0.1 M KOH	This work	
Fe ₂ P/C nanowires	1.79 V	0.1 M KOH	This work	
	1.51 V	1 M KOH	Angew. Chem. Int. Ed. 2015, 127, 9778	
$(Co_{0.54}Fe_{0.46})_2P/C$	1.60 V	0.1 M KOH	This work	

Figure S1. OER polarization curves of C–Co- and C-Fe-based NPs at 1600 rpm in N_2 -saturated 0.1 M KOH at a scan rate of 10 mV/s.

Figure S2. OER polarization curves for the C- $Co_{1.32}Fe_{1.68}O_4$ nanocubes before and after 1000 potential cycles (between 1.4 and 1.8 V) in 0.1 M KOH.