Supplementary Information

Phase-driven Magneto-electrical Characteristics of Single-

layer MoS₂

Chao-Yao Yang^a, Kuan-Chang Chiu^b, Shu-Jui Chang^a, Xin-Quan Zhang^b, Jaw-Yeu Liang^a, Chi-Sheng Chung^a, Hui Pan^c, Yuan-Chieh Tseng^{a*}, and Yi-Hsien Lee^b

^aMaterials Science & Engineering, National Chiao-Tung University, Hsin-Chu, Taiwan. ^bMaterials Science & Engineering, National Tsing Hua University, Hsin-chu, Taiwan. ^cInstitute of Applied Physics and Materials Engineering, University of Macau, Macau.

*E-mail: <u>yctseng21@mail.nctu.edu.tw</u>

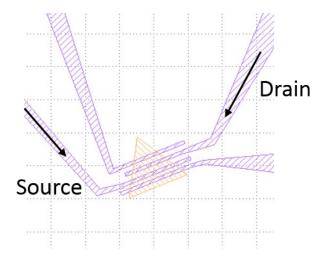


Fig. S1: The CVD-prepared MoS_2 isolated domains were transferred to fresh SiO_2/Si substrates for device fabrications. Au electrode patterns as source and drain were prepared by E-beam lithography technique followed by E-gun evaporation deposition. The pattern layout is illustrated in this figure. The SiO_2/Si substrates were employed as dielectrics and back gate respectively for controlling the carrier concentration of MoS_2 channel. The transport properties were investigated with Keithley 4200 semiconductor characterization system. The same FET devices were examined before and after gas treatments for comparison.

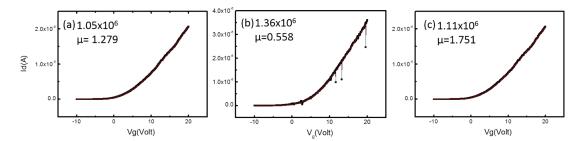


Fig. S2: The electrical characteristics (I_d-V_g) measured at $V_d=1$ V, for (a) pristine, (b) O_2 -treated, and (c) Artreated MoS_2 FET. All of the device conditions show an n-type behavior. The corresponding I_{on}/I_{off} ratio and mobility (μ) of respective device condition are numerically demonstrated inside the figures.