Coulomb blockade in monolayer MoS₂ single electron transistor: Supplementary

information

Kyunghoon Lee, Girish Kulkarni, Zhaohui Zhong * Department of Electrical Engineering and Computer Science, University of Michigan Ann Arbor, MI 48109, USA

METHODS

Monolayer and few layered MoS_2 were exfoliated from commercially available molybdenum disulfide crystal (SPI Supplies). The conductance of MoS_2 single electron transistors at 6K was measured in a cryogen-free closed cycle cryogenic probe station (CRX-4K, LakeShore).

Optical images of exfoliated MoS₂ flakes

FIG. S1. Optical image of MoS_2 single electron transistor. (Inset) Optical image of exfoliated MoS_2 flakes.

I-V characteristics of monolayer 300nm channel length MoS_2 device with SiO_2

FIG. S2. (a) Room temperature *I-V* characteristics of monolayer MoS₂ transistor with L = 300 nm, W = 1.2 μ m. This device was made from same monolayer MoS₂ flake, from which *I-V* characteristics on 200 nm channel length device was shown in Fig. 1. (b) Transfer characteristics before and after thermal annealing process. $V_{ds} = 10$ mV.

I-V characteristics of monolayer MoS₂ device with Al₂O₃ as the gate dielectrics

FIG. S3. (a) Room temperature *I-V* characteristics of monolayer MoS₂ transistor with 70 nm Al₂O₃ as the back-gate dielectrics. (b) Transfer characteristics before and after thermal annealing process. $V_{ds} = 100 \text{ mV}.$

Electrostatic simulation of fringing field screening effect

FIG. S4. The electric displacement field distribution (with contour) on the MoS2 layer with (a) 280nm SiO₂ as a gate dielectric layer, and (b) 70nm Al₂O₃ as a gate dielectric layer for the device geometry of W = 1 μ m, L = 200nm. Herein, (a) V_{bg} = 50V, V_{ds} = 100mV, (b) V_{bg} = 6.25V, V_{ds} = 100mV in consideration of ε_{SiO2} =3.9, and ε_{Al2O3} =7.8. This result indicates that only small portion of MoS₂ channel can contribute to the back gate capacitance due to fringing field screening effect due to contact electrodes.

Coulomb blockade in monolayer and multilayer MoS₂ SET

FIG. S5. The Coulomb diamonds observed in monolayer MoS_2 SETs from the devices with dimension of (a) L = 300 nm, $W = 1.2 \mu m$ (Room temperature I-V characteristics was shown in FIG. S2), and (b) L = 200 nm, $W = 1.5 \mu m$. (c) The Coulomb diamonds in a multilayer MoS_2 (flake thickness ~ 4nm, corresponding to 5 layers) SET with L = 250 nm and W = 700 nm.

Line-shape of Coulomb oscillations in the MoS_2 SET

There are two different temperature regimes for Coulomb blockade.

- (i) $\Delta E \ll k_BT \ll e^2/C$, the *classical or metallic Coulomb blockade regime*, where many excited levels are present due to thermal fluctuation.
- (ii) $k_BT \ll \Delta E \ll e^2/C$, quantum Coulomb blockade regime, where only one or a few levels are excited in transport.

The line-shape of the coulomb-blockade oscillations can be fitted to the conductance expression¹:

In the quantum Coulomb blockade regime,

$$\frac{G}{Gmax} = \cosh^{-2}\left(\frac{ea|V-V_{peak}|}{2k_BT}\right)$$

And in the classical or metallic Coulomb blockade regime.

$$\frac{G}{Gmax} = \cosh^{-2}\left(\frac{ea|V-V_{peak}|}{2.5k_BT}\right)$$

Equation B- 2

where $a = C_g/C_{\Sigma}$ is determined from the slopes of Coulomb diamonds, and V_{peak} is the back-gate voltage at resonance peak. Thus, the electron temperature in our measurements can be extracted from Coulomb blockade fits by using Equation B-2 for the classical region.

REFERENCES

1. C. W. J. Beenakker, *Physical Review B*, 1991, **44**, 1646-1656.