Electronic Supplen This journal is © TI	nentary Material (ESI) he Royal Society of Ch	for Nanoscale. emistry 2016	

Supporting Information

Ultraporous Superhydrophobic Gas-Permeable Nano-Layers by Scalable Solvent-Free One-Step Self-Assembly

Guanyu Liu,[a] William S. Y. Wong,[a] Noushin Nasiri[a] and Antonio Tricoli[a]*

[a] Nanotechnology Research Laboratory, Research School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, 2001 Australia.

^{*}Corresponding author: antonio.tricoli@anu.edu.au

Table S1 Precursors and synthesis parameters of Mn_3O_4 , TiO_2 , SiO_2 and ZnO nano-layers.

Metal oxide	Solute	Solvent	Metal-atom concentration $ (\text{mol } L^{-1}) $	L _R (ml/min)	O _{2-ΔP} (L/min)	ΔP (bar)	HAB (cm)	Deposition time (min)
Mn ₃ O ₄	Manganese(III) acetylacetonate	Acetonitrile & 2-ethylhexanoic acid (1:1 volumetric ratio)	0.2	4	5	2	17	3
TiO ₂	Titanium isopropoxide & acetylacetone (1:4 mole ratio)	Acetonitrile & 2-ethylhexanoic acid (1:1 volumetric ratio)	0.2	4	5	2	17	3
SiO ₂	Hexamethyldisiloxane & acetylacetone (1:3 mole ratio)	Acetonitrile & 2-ethylhexanoic acid (1:1 volumetric ratio)	0.2	4	5	2	17	3
ZnO	Zinc naphthenate	Xylene	0.3	4	5	3	20	3

 $L_{R:}$ precursor feed rate, $O_{2-\Delta P:}$ dispersion O_2 , $\Delta P:$ atomization pressure, HAB: height above burner.

Figure S1. High-resolution TEM images of as-synthesized (a) Mn_3O_4 , (b) TiO_2 and (c) ZnO nanoparticles.

Figure S2. FTIR spectra of the as-synthesized nanoparticles.

Figure S3. (a,b) SEM images and (c) UV-Vis transmission spectrum of ZnO nano-layers.

Figure S4. (a) Contact angle and sliding angle measurements and (b) Dynamic contact angle measurements of ZnO nano-layers (oxygen dispersion rate is 5 L min⁻¹).

Figure S5. TGA of as-synthesized Mn₃O₄, TiO₂ and ZnO nanoparticles.

Figure S6. A photograph of the water droplet on glass slide with polyurethane-acrylic based binder coating before superhydrophobic nanoparticle deposition.

Figure S7. Photograph of the superhydrophobic Mn₃O₄ nano-layer on the glass slide.

Figure S8. Anticorrosion properties of the ultraporous superhydrophobic Mn₃O₄ layers deposited on iron staples (a) before and (b) after repeated wetting with a salt solution (35 g L⁻¹ NaCl in deionized water).

Figure S9. Contact angle measurements of TiO₂ nano-layers after stability test with (a) 1200 and (b) 2400 sequential droplets.

Figure S10. Contact angle characterization of Mn₃O₄ nano-layers stored in petri dishes for (a-c) 87 and (d-f) 442 days. Dynamic contact angle measurements of Mn₃O₄ nano-layers stored in petri dishes for (g) 87 and (h) 442 days.