Fast Patterning of Oriented Organic Microstripes for Field-effect

Ammonia Gas Sensors

Binghao Wang,^{a,b} Jinqiang Ding,^a Tao Zhu,^a Wei Huang,^b Zequn Cui,^a Jianmei Chen,^a Lizhen Huang*,^a Lifeng Chi*^a

^a Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.

^b Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.

S1.

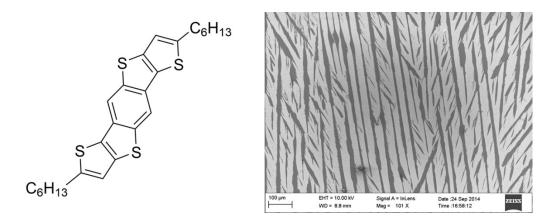


Fig. S1 Molecular structure of DTBDT-C6 molecule and SEM image of DTBDT-C6 microstripes dip-coated on bare SiO_2/Si substrate and evaporated in toluene,

S2.

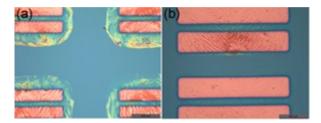


Fig. S2 The area-selective behavior of DTBDT-C6 on hydrophobic surfaces with different geometry of the gold electrodes. The treatment time with OTS is 6 h, pulling direction is upwards, lifting rate is $2000 \, \mu \text{m/s}$ and scale bar is $500 \, \mu \text{m}$.

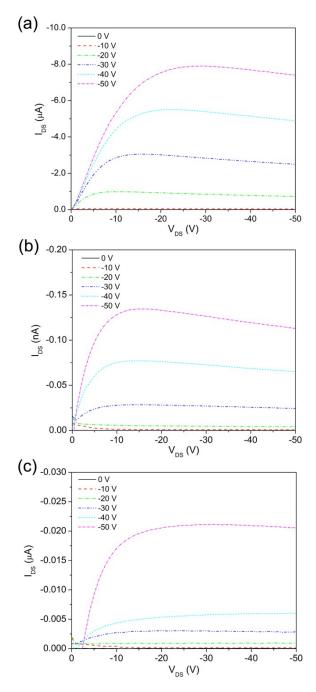


Fig. S3. Output characteristics of top-contact OFETs with DTBDT-C6 microstripes grown on (a) Si/SiO₂ substrate, Output characteristics of bottom-contact OFETs with DTBDT-C6 microstripes grown on (b) Si/SiO₂ substrate treated with OTS for 6 h and evaporated in the toluene vapor atmosphere slowly, (c) Si/SiO₂ substrate treated with OTS for 6 h and evaporated fast in air. The channel length is 50 μm.

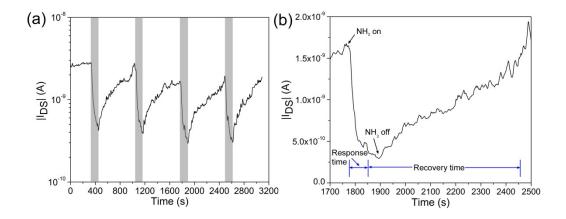


Fig. S4 (a) Sensing curve, i.e., plot of absolute source-drain current versus time with exposure to NH_3/N_2 mixed gas or pure N_2 . V_{GS} and V_{DS} are fixed at -40 V. The grey bars indicate the exposure of 50 ppm NH_3/N_2 mixed gas. (b) Enlarged panel in (a), showing the detailed shape of sensing curves and definition of response/recovery time.

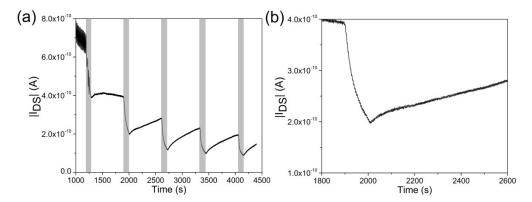


Fig. S5 Plot of absolute source-drain current versus time with exposure to NH_3/N_2 mixed gas or pure N_2 for patterned OFETs with microstripes evaporated in toluene vapor. V_{GS} and V_{DS} are fixed at -40 V. The grey bars indicate the exposure of 50 ppm NH_3/N_2 mixed gas.

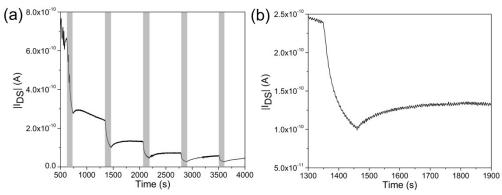


Fig. S6 Plot of absolute source-drain current versus time with exposure to NH_3/N_2 mixed gas or pure N_2 for patterned OFETs with microstripes evaporated in air. V_{GS} and V_{DS} are fixed at -40 V. The grey bars indicate the exposure of 50 ppm NH_3/N_2 mixed gas.