Supporting Information for

Noise and Sensitivity Characteristics of Solid-State Nanopores with a Boron

Nitride 2-D Membrane on a Pyrex Substrate

Kyeong-Beom Park¹, Hyung-Jun Kim¹, Hyun-Mi Kim¹, Sang A Han², Kang Hyuck Lee², Sang-Woo Kim² and Ki-Bum Kim^{1*}

¹ Department of Materials Science and Engineering, Seoul National University, Seoul 151-742, Korea

² SKKU Advanced Institute of Nanotechnology (SAINT), Center for Human Interface Nanotechnology

(HINT), Sungkyunkwan University (SKKU), Suwon 440-746, Korea

* To whom correspondence should be addressed. E-mail: kibum@snu.ac.kr, Telephone: 82-2-880-7095, Fax: 82-2-885-5820

Supporting information

	Туре	Dimension	Supporting layer	A _N , Noise power
	Graphene	Φ 8 nm / 3 ~ 15 layer	Φ 1.5 μ m window	7×10^{-6}
Nano.lett., 2010	Graphene with	Φ 7.5 nm /	/	2.5×10^{-7}
	TiO2	Gr with $TiO_2 5 nm$	SiN 40 nm	
Ashvani et.al.,			Φ 60 ~ 80 nm	
Nanotechnology,	Graphene	Φ 5 nm / few layers (1~3 nm)	window/	6.7×10^{-7}
2013			SiN 20 nm	
Dekker <i>et.al.,</i>			Φ1μm window /	6
Nanotechnology,	Graphene	Φ 10 nm / single layer	SiN 200 nm	6.3×10^{-6}
2015				
Zhi et al Scientific			200 x 200 nm	
	BN	Φ 10 nm / 1~2 layer	window/	6.7×10^{-7}
Reports, 2013			SiN 50 nm	
Our results	BN	Φ 4 nm / single layer	gle layer Φ 60~ 80 nm w layers w layers SiN 100 nm w layers	1.3×10^{-6}
		Φ 4 nm / few layers		7.6×10^{-7}
		Φ 8 nm / few layers		3.7×10^{-8}
		Φ 12 nm / few layers		2.1×10^{-8}

Table S1. Noise powers values compared with the reported 2-D nanopores.

Figure S1. Power spectral densities of Φ 4 nm (25 nS), 8 nm (78 nS), 12 nm (113 nS) *m*-BN nanopores in 1 M KCl with 1x TE buffer (pH 8.0) at 100 mV. Blue solid lines are noise fits of $S(f) = A/f^{\beta}$ (where A is fitting parameter and $0 < \beta < 2$).

Figure S2. (a) Ionic current traces for 1kbp dsDNA translocation at 150 mV (black), 200 mV (red) and 250 mV (blue) through Φ 4 nm *m*-BN nanopore in 1M KCl with TE buffer (pH 8.0), filtered at 10 kHz. Each trace is measured during 10 sec. (b) Scatter plots of blockade current (Δ I) and dwell time for 150 mV, 200 mV and 250 mV. (c) Normalized histogram of Δ I corresponding to (b) with different voltages. The inset is blockade current level as a function of voltage, showing linear dependency of Δ I on the applied voltage.

Figure S3. (a) Histogram of current drops, which magnitude is larger than $10 \times I_{RMS}$, at 200mV and 100 kHz. The dotted lines are fitted to Gaussian distributions and each distribution is divided to 'bouncing' and 'translocation', respectively. Inset shows a magnified view of representative bouncing and translocation events. (b) Mean ΔI and t_d values of translocation events and bouncing spikes as a function of voltage.

Figure S4. (a) Ionic current traces for 1 kbp dsDNA translocation through Φ 4 nm *m*-BN pore at 150 mV applied voltage, filtered at 100 kHz (blue) and 10kHz (red) in 1 M KCl with TE buffer (pH 8.0). (b) A magnified view of 7 DNA translocation events with different durations ranged from 20 and 200 us.

Figure S5. Signal to noise ratio of Φ 4 nm *m*-BN nanopore as a function of voltages at 10 kHz and 100 kHz; SNR = $\Delta I / I_{RMS}$.