
SUPPLEMENTARY INFORMATION

Mean-field and linear regime approach to magnetic hyperthermia of core-
shell nanoparticles: Can tiny nanostructures fight cancer?

Marcus S. Carrião and Andris F. Bakuzis∗

Instituto de Física, Universidade Federal de Goiás, Goiânia, GO 74001-970 Brazil. E-mail: bakuzis@ufg.br

1 Unit cells per region calculation

If ac and as are the lattice constant of material that compose core
and shell, respectively, one can define the thickness of surface and
shell interface as as, thickness of core interface as ac, the shell
kernel thickness as las, where l is arbitrary, and the core kernel
diameter can be written in terms of the nanoparticle diameter d
as dck = d− (4as +2las +2ac). From this, the core kernel volume
can be written (Vck = πd3

ck/6), and so, divided by the volume of
the cubic unit cell a3

c , it gives the number of unit cells in this
subregion. In our approximation we consider the lower integer
value. Analogously, the number of unit cells in each subregion
can be obtained (see Fig. 2b of main article):

Nck =
π

6a3
c
(d− (4as +2las +2ac))

3 , (S1a)

Nci =
π

6a3
c
(d− (4as +2las))

3−Nck, (S1b)

Nsi =
π

6a3
c
(d− (2as +2las))

3−Nck−Nci, (S1c)

Nsk =
π

6a3
c
(d− (2as))

3−Nck−Nci−Nsi, (S1d)

Nsu =
π

6a3
c
(d)3−Nck−Nci−Nsi−Nsk, (S1e)

So one can consider that Nc =Nck+Nci, Ns =Nsi+Nsk+Nsu, and
NT = Nc +Ns, where Nck, Nci, Nsi, Nsk, and Nsu are the number of
unit cell in core kernel, core interface, shell interface, shell kernel,
and surface, respectively. Figure S1 shows the percentage of each
region, core and shell, as function of the diameter of nanoparticle.

2 Core-Shell Hamiltonian

The Heisenberg-like Hamiltonian used to describe the nanoparti-
cle sites is

H =−gµBµ0 ∑
i

~H ·~Si−2 ∑
i< j

Ji j~Si · ~S j, (S2)
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Fig. S1 Percentage of unit cell in each region of nanoparticle as
function of diameter.

where i and j run over all sites. If ic and is are counters that run
exclusively over core and shell sites, respectively, one can split the
Hamiltonian into

H =

(
−gµBµ0 ∑

ic

~H ·~Sic −2 ∑
ic< j

Jic j~Sic · ~S j

)∣∣∣∣∣
core

+

+

(
−gµBµ0 ∑

is

~H ·~Sis −2 ∑
is< j

Jis j~Sis · ~S j

)∣∣∣∣∣
shell

.

(S3)

In first neighbours approximation, j no longer runs over all
sites, but only in i+ δ , where δ runs over all first neighbours.
Thus, a first neighbour j can be at the same region as i or at the
other region with the corresponding exchange term. For example,
for core sites the first neighbour can be at core kernel ( jck) or core
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interface ( jci)

H Exchange
core =−

(
2 ∑

ick,δ

Jcc~Sick ·~Sick+δ

)∣∣∣∣∣
core kernel

+

−

(
2 ∑

ici,δ

Jcδ
~Sici ·~Sici+δ

)∣∣∣∣∣
core interface

.

(S4)

If Jcc is the exchange constant between sites of core and Jcs is
the exchange constant between sites of different regions, then Jcδ

should assume the corresponding value if the neighbour of core
interface site is in core or shell region. This same procedure can
be done to shell region. Is important to notice that in Heisenberg
Hamiltonian, J is related to the interaction between the spin of
atoms. Here, the exchange parameter is related to the exchange
interaction between sites, which means unit cells. So, J assumes
an effective value for the entire unit cell. As well, the spin of the
site now corresponds to an effective spin in that region. From this
Hamiltonian, the energy of the sites of each region within mean
field theory can be written using Hl = −SlEl . As an example,
specifically to core region:

Ec = gµBµ0 ∑
ic

H +2 ∑
ick,δ

Jcc〈Sc〉+2 ∑
ici,δ

Jcδ 〈Sδ 〉. (S5)

The sum in ic results in Nc, the sum in ick in Nck, the sum in ici

in Nci , while the sum in δ corresponds to the number of first
neighbours.〈Sδ 〉 can assume the mean spin value of core 〈Sc〉 or
shell 〈Ss〉 depending where this neighbour is located. While the
mean spin value is calculated from

〈Sl〉=

Tr

Sle

SlEl

kBT


Tr

e

SlEl

kBT


, (S6)

with Tr the trace over the spin states.

3 Magnetisation description functions

The saturation magnetisation can be defined as a volumetric den-
sity of magnetic moments, so for each site (unit cell), one can
write:

MS =
gµBSeff

a3 , (S7)

where g is the Landé factor, µB the Bohr magneton and Seff the ef-
fective spin of site. The nanoparticle magnetisation, however, de-
pends on magnetic field and its value depends on magnetisation
of core and shell, which are provided by the coupled equations.
Thus, one will get each component (Mc and Ms) as function of

mean spin (〈S(c)〉 and 〈S(s)〉), which varies from −Seff to Seff:

〈Sc〉= (NckF (Eck)+NciF (Eci))/Nc, (S8a)

〈Ss〉= (NsuF (Esu)+NskF (Esk)+NsiF (Esi))/Ns. (S8b)

The equations above are numerically solved. Depending on the
number of spin states distinct functions F (E) are obtained. For
spin 1/2, Callen identity is obtained. This function might rep-
resent cases with very strong uniaxial anisotropy. When the ef-
fective spin is very large, tending to infinity, Langevin is obtained.
For any spin value, one finds the Brillouin function (BS(x)) which
varies from −1 to 1. So, one find that F (x) = SeffBS(x), i.e.

F (x) =Seff

[(
1+

1
2Seff

)
coth

(
x
(

1+
1

2Seff

))
+

− 1
2Seff

coth
(

x
2Seff

)]
.

(S9)

4 Energy argument of Brillouin Function

From Heisenberg-like Hamiltonian, one can find the energy terms
for each subregion sites trough mean field theory procedure. The
Zeeman contribution is present in all subregions, however, the ex-
change interaction depends on the environment (number of first
neighbours) of the sites. So, these energy arguments of Brillouin
function are:

Eck =
zJccSeff〈Sc〉+gµBµ0SeffH

kBT
, (S10a)

Eci =
(z− z′)JccSeff〈Sc〉+ z′JcsSeff〈Ss〉+gµBµ0SeffH

kBT
, (S10b)

Esi =
(z− z′)JssSeff〈Ss〉+ z′JcsSeff〈Sc〉+gµBµ0SeffH

kBT
, (S10c)

Esk =
zJssSeff〈Ss〉+gµBµ0SeffH

kBT
, (S10d)

Esu =
(z−1)JssSeff〈Ss〉+gµBµ0SeffH

kBT
. (S10e)

z is the maximum number of first neighbours of a site (in cubic
arrangement, 6), while z′ is the number of first neighbours of
interface sites that are located in the other region (for our case
z′ = 1).

5 Polydisperse Models

In the conventional LRT model, SLP expression have a explicit de-
pendence in diameter d. For this reason, a polydisperse equation
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can be found by the integration of

SLPpoly =

∞∫
0

SLPmono(d)g(d)dd, (S11)

where g(d) is the distribution function of diameter (see Section
9). In the model presented in the main article, for an ensemble
core-shell nanoparticles, the diameter is considered to calculate
the nanoparticle volume (V(T)) and the number of unit cells Ni

of each region (see eq. 11 of main article). But Ni is necessary
to calculate the equilibrium magnetisation of each region (MO(i))
and, since the magnetisations are given by two transcendental
coupled equations, a direct integration is not possible. Never-
theless, Ni can be written in terms of volume, and therefore can
be integrated. That way, the core-shell polydisperse model were
obtained from two different integrations: a direct integration of
total volume V(T) (outside of parenthesis in eq. 11) and a integra-
tion of Nc and Ns:

Ni =
Vi

ai3
=

1
ai3

∞∫
0

V (d)g(d)dd, (S12)

which results in a mean value of polydisperse number of unit cell
for each region. Then, this value is used to calculate M0 and ϕ for
each region (both inside of parenthesis). This type of procedure
is similar to a decoupling approximation, where the mean of the
product of two functions, κ and η , corresponds to the product of
the mean value of each function, i.e. 〈κη〉= 〈κ〉〈η〉.

6 Nanoparticle synthesis
The fluid was synthesised by the co-precipitation of iron and
manganese chlorides (FeCl3.6H2O and MnCl2.4H2O) in methy-
lamine CH3NH2 followed by passivation process with iron nitride
Fe(NO3)3 in nitric acid (HNO3) and a subsequent coating with
citrate (from sodium citrate dihydrate, C6H5Na3O7.2H2O).

7 Magnetophoretic experiment
For each sample, a flask containing approximately 4 ml were po-
sitioned on a support that lay a few millimetres over a perma-
nent magnet (see Fig. S2). This magnet produces a gradient
of magnetic field which interacts with nanoparticles (which are
uniformly magnetised single-domains) magnetic moments (~m),
promoting motion due a magnetic force (considering a uniform
magnetisation):

~Fm =−∇

(
−~m ·~B

)
= (~m ·∇)~B. (S13)

The nanoparticles start to move down, decreasing the distance
with the magnet, and increasing the dipolar interaction with it.
The magnet, submitted to the reaction force, is pulled up by the
fluid in the flask. The weighing scale indicates a decreasing of
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Weighing
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Fig. S2 Scheme of apparent mass magnetophoretic experiment.

the apparent mass of the magnet, which is evidently dependent
of magnetic fluid properties. Monitoring this effect over time (see
Fig. S3), is possible to identify a saturation process, when hydro-
dynamic equilibrium is reached. After 92 hours (5520 minutes) of
experiment, parts of 200 µl were taken with a micropipette from
the top and bottom of the flask.
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Fig. S3 Magnet apparent mass variation as function of time.

8 Vibrating sample magnetometry
The samples taken from the magnetophoretic experiment have, at
least, two distinct properties: concentration and particle size. The
first, due the motion of particles towards flask bottom. The sec-
ond, due different response to gradient of magnetic field. How-
ever, for nanostructures, many properties (including magnetisa-
tion) are size dependent. Figure S4a shows specific magnetisa-
tion curves of powder (obtained after 24 hours drying at 60 ◦C)
of samples, measured in a ADE Magnetics magnetometer, model
EV9. If all nanoparticles have the same magnetisation, we should
have three identical curves, but it is not the case. Original and
Bottom samples present similar behaviours and the difference
(around 3%) can be explained by the diameter variation (con-
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firmed by TEM, as will be discussed). The Aliquot sample, how-
ever, presents a drastically low magnetisation promoted (not only,
but also) by diameter decreasing. The process of drying the sam-
ples allows to estimate the concentration x = mp/vt , knowing the
total volume dried (vt) and measuring the mass of remaining
powder mp. We will call this a massic estimation of concentration.
The values obtained were 77.1 mg/ml, 15.6 mg/ml and 79.5 mg/ml
for Original, Aliquot and Bottom samples, respectively.
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Fig. S4 (a)Specific magnetisation as function of applied field for powder
samples. (b)Specific magnetisation as function of applied field for liquid
samples, as taken from magnetophoretic experiment.

Liquid samples, as taken from magnetophoretic experiment,
were also magnetically characterised. Figure S4b shows the spe-
cific magnetisation as function of applied field. Comparing the
saturation magnetisation of liquid and powder samples, is possi-
ble to determine the volume fraction (φ) and then the concentra-
tion (x = ρφ). From this magnetic estimation, the concentrations
found were 66.3 mg/ml, 16.5 mg/ml and 76.5 mg/ml for Origi-
nal, Aliquot and Bottom samples, respectively, which agree with
massic estimation. At first glance, from LRT point of view, SLP
should not depend on concentration. Nevertheless, some phe-
nomena which affects the heat efficiency (for example, particle-
particle interaction) depend on concentration. For this reason we

decide to dilute Original and Bottom samples, to reach Aliquot
concentration, before analyse the heating rate curves. The mag-
netisation curves of samples at same volume fraction can be seen
in the main article. Although considered at the same concentra-
tion, in reality, the samples present a mean mass concentration of
15.1± 1.1 mg/ml, which represent an standard deviation of 7%.
This small difference should not affect the heating efficiency. Ta-
ble S1 shows the experimental magnetisations obtained for the
samples.

Sample MS (Fig. S4a) MS (Fig. S4b) MS (Fig. 7a)
(emu/cm3) or (kA/m)

Original 242.1±0.5 15.6±0.5 3.4±0.5
Aliquot 111.1±0.5 1.8±0.5 1.8±0.5
Bottom 248.2±0.5 19.0±0.5 3.8±0.5

Table S1 Experimental MS values for powder, fluid samples at different
concentrations (as acquired from magnetophoretic experiment) and fluid
samples at same concentration (15.1±1.1 mg/ml).

9 Transmission electron microscopy

The TEM images were obtained in LabMic (www.labmic.ufg.br)
facilities using a JEOL JEM-2100 microscope. Samples were di-
luted in isopropyl alcohol and dropped on copper grids (coated
with carbon films) and dried. Figures S5a, S5b and S5c shows
an example of image used to measure nanoparticles size and Fig.
S6d shows another image, in higher magnification, of MnFe2O4

nanoparticles. With help of open source program ImageJ, main-
tained by National Institute of Health (www.imagej.nih.gov), di-
ameter of the nanoparticles were measured and disposed in his-
tograms, fitted by log-normal distribution:

g(d) =
1

dδ
√

2π
exp

[
− ln(d/dm)

2

2δ 2

]
. (S14)

Sample Counts dm δ

(nm)
Original 523 11.1±0.1 0.29±0.01
Aliquot 490 8.2±0.2 0.27±0.03
Bottom 535 12.7±0.4 0.38±0.03

Table S2 Parameters of log-normal fitting.

Table S2 shows the log-normal fitting parameters for each sam-
ple. From the fitting, the mean diameter d̄ = dm exp

(
δ 2/2

)
and

standard deviation SD =
((

exp(δ 2)−1
)

dm
2 exp(δ 2)

)1/2
were cal-

culated. The size histograms, number of counts and log-normal
fitting parameters can be seen in the main article.

S4 |S1–S7 Electronic Supplementary Information for Nanoscale
This journal is c©The Royal Society of Chemistry 2016



a

b

c

d

Fig. S5 Low magnification TEM images of nanoparticles in samples (a)
Original, (b) Aliquot, (c) Bottom, and (d) high magnification image of
sample Original.

10 Magnetic hyperthermia experiment
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Fig. S6 Temperature variation as function of time in magnetic
hyperthermia of liquid samples (as taken from magnetophoretic
experiment).

Using approximately 100 µl, liquid samples were submitted to
magnetic hyperthermia procedure in a nanoTherics equipment,
model magneTherm, applying alternating magnetic fields of am-
plitude 125 Oe (9.9 kA/m) and frequency 980 kHz. The temper-
ature was monitored with optical fibre thermometer. Figure S6
shows the temperature variation as function of time in magnetic
hyperthermia of liquid samples with the concentration acquired
from magnetophoretic experiment. When compared with temper-
ature variation at same concentration (that can be seen in main
article), becomes evident the influence of concentration in heat-
ing rate. These curves were fitted using a Box-Lucas function
(T (t) = a(1− e−bt)) from which is possible to obtain the heating
rate (dT/dt)t→0 = ab.

11 LRT versus Core-Shell model
Although both LRT and our core-shell model are used to describe
properties of the same type of system, i.e. magnetic nanoparticles,
there is a difficulty associated to do a fair comparison between
them. It comes from the fact that they were designed from differ-
ent concepts of systems. LRT is homogeneous in all meanings: the
nanoparticle properties (MS, K, α, ρ, etc) are macroscopic mean
values and do not depend on nanoparticle internal structure, di-
ameter, etc. This means that, for some theoretical calculations,
properties are overestimated or underestimated. To exemplify
that, consider the calculation of theoretical SLP as function of
diameter for some sample. In LRT approach, the magnetisation
(as many other parameters) is assumed as independent of diam-
eter, when it actually is not. Thus, magnetisation will be over-
estimated for small nanoparticles and underestimated to larger
ones. One way skip this problem is assume our core-shell de-
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Fig. S7 (a) SLP as function of diameter for LRT and core-shell model,
considering the diameter dependent of magnetisation, when
Keff = Ks = Kc (dashed lines) and Keff follows Eq. (S15). (b) SLP as
function of applied field for LRT and core-shell model. (c) SLP as
function of frequency for LRT and core-shell model. In the inset, same
dependence for higher frequency values, approaching saturation. The
parameters used here correspond to soft material, as shown in Table 1
of main article.

scription of magnetisation (MS(d)) as a input to LRT. Figure S7a
shows (as dashed lines) LRT and our core-shell model results in
this case. As discussed along the article, the considerations of
our core-shell model increase the SLP of small nanoparticles, and

decrease the SLP around optimum diameter (which provide max-
imum SLP). Now, consider that this study of SLP as function of di-
ameter will take into account the surface anisotropy (which could
be needed to explain measured K above bulk values). Once more,
a nanoparticle property (in this case, anisotropy) is assumed as
independent of diameter. However, the surface anisotropy contri-
bution should increase while diameter decreases (since surface-
volume ratio increases). One could perform this simulation, but
(once more) anisotropy will be overestimated or underestimated,
depending on size. We could try to do the same procedure de-
scribed above for magnetisation, using Kc and Ks (which are pro-
portional to Dc and Ds) of our core shell model to estimate the
equivalent effective anisotropy Keff of LRT. A way to do that is
consider Keff = Kvol + (6/D)Ksur, where Kvol represents the vol-
umetric anisotropy contribution and Ksur the surface anisotropy
contribution. Usually, Kvol assumes the bulk value, but here it
will be considered equal to core-shell model’s Kc, for compari-
son. On the other hand, Ksur and Ks have different units, and to
correct this, one could compare the anisotropy energies involved
VsKs = KsurSnp, where Snp is the nanoparticle surface area. Finally,
the Keff of LRT in terms of core-shell model properties can be
written:

Keff = Kc +
Ns

NT
Ks. (S15)

Figure S7a shows (in solid lines) a comparison of LRT and core-
shell model considering Ks = 10Kc. One can see that, as discussed
in main article, anisotropy changes in core-shell model implies
in shifts of each contribution peak. While, in LRT some kind of
change will imply in major modifications (similar to the changes
promoted by dipolar interaction, see Ref. 18 of main article).
Again, it is clear that the foundation of these two models are
quite different: one is based on uniformity of nanoparticles and
the other on interaction between nanoparticles elements (regions,
unit cells, etc). The existence of two peaks in core-shell model in
naturally expected, since one have two regions (which somehow
act like two separated but interdependent systems). On the other
hand, in LRT not even all these modifications described above are
sufficient to provide similar results. After all, within a range of
acceptable parameters, LRT and core-shell model have some sim-
ilarities, like optimum diameter (see dashed lines in Fig. S7a);
the dependence with applied field (see Fig. S7b); and the de-
pendence with the frequency (see Fig. S7c). However, the most
important similarity is the validity limit. Both models are based
on linear response, but described in terms of different parameters.
The definition of the validity range is often related to ξ < 1 and
all critics applied to LRT (except homogeneity, obviously) could
also be made to core-shell model (see Ref. 38 of main article).

12 Model calculation

All calculations were performed using Maple 13 software.
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13 Shell thickness study
In main article, magnetisation and SLP were studied as function
of diameter (see Fig. 5c and 5d). The curves were shown in diam-
eter scale and the upper axis showed the equivalent Ns/NT frac-
tion. Since the relation between diameter and Ns/NT is not linear,
is convenient to present a alternative version of these curves, as
showed in Fig. S8.
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Fig. S8 (a) Magnetisation as function of Ns/NT for different Jc/Js ratio.
(b) SLP as function of Ns/NT for different Jc/Js ratio. Alternative scale of
Fig. 5c and 5d of main article.
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