Supporting Information:

Computational design of peptide-Au cluster probe for sensitive

detection of $\alpha_{IIb}\beta_3$ Integrin

Lina Zhao¹, Jiao Zhai¹, Xuejie Zhang^{1, 2}, Xueyun Gao^{1, *}, Xiaohong Fang², Jingyuan Li^{1,*}

¹Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China

²Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China

Email: lijingyuan@ihep.ac.cn, gaoxy@ihep.ac.cn

Figure S1. The original binding modes of γC peptide. (a) The electrostatic interaction between Asp410 of γC peptide and MIDAS Mg²⁺ ion. (b) The salt bridge formed by Lys406 of γC peptide and Asp224 of α subunit in integrin. (c) The hydrophobic interaction between Ala408 of γC peptide and Phe231/Leu192/Tyr190 of α subunit in integrin.

Figure S2. The distribution of the negatively charged residues around the binding site of γC peptide. Asp and Glu are shown in red and orange, respectively.

Figure S3. The structure of Au_{18} cluster encapsulated by 14 sulfur atoms. Au, S atoms are in pink and yellow respectively.

Figure S4. The structure of Au_{18} Peptide₇ probe. Au_{18} is displayed in CPK representation and the coating peptides are in NewCartoon representation (a) and in CPK representation (b). Au, S, C, N, O, H atoms are in orange, yellow, cyan, blue, red, and white respectively.

Figure S5. The RMSD of binding motif of γC peptide (black) and Peptide' of Au₁₈Peptide₇ (red) and of Au₁₈Peptide₁ (blue) bound to $\alpha_{IIb}\beta_3$ integrin.