Supplementary Information For Gate Tunable WSe₂-BP van der Waals Heterojunction Devices

Peng Chen¹, Ting Ting Zhang¹, Jing zhang¹, Jianyong Xiang², Hua Yu¹, Shuang Wu¹, Xiaobo Lu¹, Guole Wang¹, Fusheng Wen², Zhongyuan Liu², Rong Yang¹, Dongxia Shi¹ & Guangyu Zhang^{1,3,*}

¹ Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

² State Key Laboratory for Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China

³ Collaborative Innovation Center of Quantum Matter, Beijing 100190, China

* Corresponding author. Email: gyzhang@iphy.ac.cn

Main Contents

- **A. Device Fabrication Procedure**
- **B.** AFM characterization of the WSe₂-BP heterojunction
- C. Raman Spectra of the main device
- D. Semi-log plot of I_{DS} - V_{DS} curves in Figure 2a of the main text
- E. Exclude the influence of contact resistance

F. Band alignment of p-p junction at different bias

G. The spatially resolved photocurrent measurement

H. The electrical performance of other device

I. References

A. Device Fabrication Procedure

WSe₂ and BP layers were exfoliated using scotch tape method¹. The WSe₂ flake was exfoliated on a Si/SiO₂ substrate (100 nm SiO₂) whereas BP flake was exfoliated on a PVA (polyvinyl alcohol)/PMMA bilayer². Then, we transferred the bilayer film from substrate with a perforated scotch tape, and the film was suspended on the hole of scotch tape. The BP flake was then transferred onto the desired location on the WSe₂ layer, using a modified high resolution microscope system. The substrate was heated

to 60 $\,{}^\circ\!\mathrm{C}$ during the transfer process. The PVA and PMMA polymer were removed by

the deionized water and Acetone. Finally, the heterojunction devices with Ti/Au (6 nm/50 nm) electrodes were fabricated using standard electron-beam lithography followed by metal evaporation and lift-off.

B. AFM characterization of the BP-WSe₂ heterojunction

The surface morphology of the heterojunction has been characterized by an atomic

force microscope (AFM) operated in the tapping mode (Figure S1). The thickness of

WSe₂ and BP is 12 nm and 20 nm, respectively. There are some bubbles presents in

our sample. The bubbles generated during the transfer process.

C. Raman Spectra of the main device

Figure S2 shows the Raman spectrum of BP (black curve), WSe₂ (red curve) and WSe₂/BP heterostructure (blue curve). Raman peaks of BP at 362 cm⁻¹, 439 cm⁻¹, and 467 cm⁻¹ are attributed to the A_g^1 , B_g^2 , and A_g^2 phonon modes, respectively³. Raman peaks of WSe₂ at 249 cm⁻¹, 258 cm⁻¹ are attributed to the E_{2g}^1 and A_{1g} phonon modes. The peak at 308 cm⁻¹ may origin from the interlayer interaction. The other peaks

observed in the range of 100-450 cm⁻¹ are assigned as the second order and combinational modes⁴. Raman peaks of the overlapped region consist of contributions from both WSe₂ and BP with a slight shift, indicating a good quality of this van der Waals heterojunction.

D. Semi-log plot of I_{DS}-V_{DS} curves in Figure 2a of the main text

Figure S3 shows the I_{DS}-V_{DS} curves for the p-p junction in semi-log scale. The

reversed current is about 10^{-11} A at V_{DS}=-3V.

E. Exclude the influence of contact resistance

The I_{DS} - V_{DS} measurements of D1-D2 and S1-S2 were shown in Fig. S4. From the data, we could see the I_{DS} - V_{DS} curve of BP is linear, while the I_{DS} - V_{DS} curve of WSe₂ is nonlinear at V_{BG} =-30 V. These results indicate the contact of BP (p-type) is ohmic, while the contact of WSe₂ (p type) is Schottky contact. As the Schottky diode could also lead to the current rectification, we carefully analyzed the influence of Ti/WSe₂ Schottky barrier to the current rectification observed in p-p junction.

Firstly, we evaluated the contribution of contact with the help of the band alignment of Ti and WSe₂. Fig.S5 shows the band alignment of Ti and p type-WSe₂, where a Schottky barrier Φ_s is present at the interface. When V>0, the holes will transport from metal to WSe₂, and need to overcome the Schottky barrier Φ_s . When V<0, the holes will transport from WSe₂ to metal, and don't need to overcome the barrier Φ_s . It means the contact resistance of Ti/WSe₂ at V>0 is larger than that at V<0. This is obviously discrepancy with the experimental result, indicating the contact plays a trivial role in the heterojunction device.

Secondly, we compared the contact resistance and junction resistance. From the I_{DS} - V_{DS} measurement of D1-D2, we obtained the device resistance R1< 8 M Ω at V_{BG} =-30 V. R1 contain two parts: the sheet resistance of WSe₂ and the contact resistance of Ti/WSe₂. Thus, either the contact resistance or sheet resistance of WSe₂ should be smaller than 8 M Ω (V_{BG} =-30 V). From the D1-S1 measurement, we found R2~100 G Ω at V=-3 V (calculated from Fig. S3), and it is 10⁴ times larger than R1. R2 contains three parts: the sheet resistance of WSe₂ and BP, the contact resistance of WSe₂ and BP and the junction resistance of WSe₂/BP. Such a large R2 can't be attributed to the contact resistance or sheet resistance, and can be only attributed to the junction resistance.

F. Band alignment of p-p junction at different bias

The band alignments of WSe₂-BP p-p junction at different bias were illustrated at Figure S6. With V_{DS} <0, the holes transport from BP to WSe₂, and a large energy barrier ΔE_{ν} presents at interface. With V_{DS} >0, the holes transport from WSe₂ to BP, and a small energy barrier presents at interface.

G. The spatially resolved photocurrent measurement

To further confirm the photocurrent is generated from the junction, the spatially resolved photocurrent measurement was carried out (Figure S7). The wavelength of the incident laser is 785 nm. The power of the laser is 12.5 μ w, and the spot size of the laser is about 1 um. The device was tuned to p-p junction with applying V_{BG}=-20 V, and the current was measured under 0 V bias. We could see that the photocurrent is almost generated at the junction area.

H. The electrical performance of other device

Figure S8a and S85b show the optical image and AFM image of another heterojunction. The thickness of WSe_2 and BP is 7 nm and 18 nm, respectively. We observed similar electrical performance in this device, where the p-p junction show large current rectification ratio, and the n-n junction show neglect current rectification ratio (Figure S8c and Figure S8d).

I. References:

1. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. *Science* **2004**, 306, (5696), 666-669.

Lee, C. H.; Lee, G. H.; van der Zande, A. M.; Chen, W. C.; Li, Y. L.; Han, M. Y.; Cui, X.; Arefe, G.; Nuckolls, C.; Heinz, T. F.; Guo, J.; Hone, J.; Kim, P. *Nat. Nanotechnol.* 2014, 9, (9), 676-681.

3. Liu, H.; Neal, A. T.; Zhu, Z.; Luo, Z.; Xu, X.; Tománek, D.; Ye, P. D. ACS Nano 2014, 8, (4), 4033-4041.

4. Li, H.; Lu, G.; Wang, Y.; Yin, Z.; Cong, C.; He, Q.; Wang, L.; Ding, F.; Yu, T.; Zhang, H. *Small* **2013**, 9, (11), 1974-1981.

Figure S1. AFM image of the WSe₂-BP heterostructure. The red dashed line denotes the boundary of overlapped region.

Figure S2. Raman Spectrum of the main device. The black, red and blue curve denotes the Raman spectrum of BP, WSe₂, WSe₂/BP, respectively.

Figure S3. The semi-log plot of Semi-log plot of I_{DS} - V_{DS} curves in Figure 2a of the main text.

Figure S4. (a) The I_{DS} - V_{DS} curves of D1-D2. (b) The I_{DS} - V_{DS} curves of S1-S2.

Figure S5. The band alignment of Ti-WSe₂(p-type) at V=0 (a), V>0 (b) and V<0 (c). The open black circles denote holes in valence band. The black arrow denotes the moving direction of holes.

Figure S6. The band alignment of p-p junction at $V_{DS}=0$ (a), $V_{DS}>0$ (b) and $V_{DS}<0$ (c). The open black circles denote holes in valence band. The black arrow denotes the moving direction of holes.

Figure S7. Spatially resolved photocurrent measurement of the WSe₂-BP heterojunction device.

Figure S8. (a) Optical image of WSe₂-BP heterojunction device. (b) AFM image of the device shown in (a). (c) The I_{DS} - V_{DS} curves of p-p junction. Inset shows the $|I_F/I_R|$ at V_{BG} =-40 V, -38 V and -36 V. (d) The I_{DS} - V_{DS} curves of n-n junction. Inset shows the $|I_F/I_R|$ at V_{BG} =32 V, 36 V and 40 V. Inset shows the $|I_F/I_R|$ at V_{BG} =32 V, 36 V and 40 V.