Synthesis of octahedral, truncated octahedral, and cubic Rh₂Ni nanocrystals and their structure–activity relationship for decomposition of hydrazine in aqueous solution to hydrogen

Chun Li,^{a, b} Tao Wang,^{a, b} Wei Chu,^{* c} Ping Wu,^{a, b} and Dong Ge Tong^{* a, b}

^a Mineral Resources Chemistry Key Laboratory of Sichuan Higher Education Institutions, College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.

E-mail: tongdongge@163.com; Fax: +86 28 8407 9074

^b Collaborative Innovation Center of Panxi Strategic Mineral Resources Multi-purpose Utilization, Chengdu 610059, China.

 ^c College of Chemical Engineering and Key Laboratory of Green Chemistry & Technology of Ministry of Education, Sichuan University, Chengdu 610065, China.
E-mail: chuwei1965@foxmail.com; Fax: +86 28 8540 3397

Summary: 42 Pages; 4 Tables; 50 Figures

Sample	Reaction	Reaction time	Rh/Ni	margaric	BTM/(Rh +	$Ge(C_2H_5)_4/(Rh +$	Octahedrons	Average	Chemical	Rh/Ni
	temperature / °C	/ min	precursors	acid/(Rh + Ni)	Ni)	Ni)	percentage / %	size / nm	composition	atomic ratio
1	200	45	1:1	1:1	1.2	0.1	100.0	16.8	Rh _{66.79} Ni _{33.21}	2.01
2	190	45	1:1	1:1	1.2	0.1	100.0	12.9	Rh _{66.67} Ni _{33.33}	2.00
3	180	45	1:1	1:1	1.2	0.1	100.0	8.6	Rh _{66.68} Ni _{33.32}	2.00
4	170	45	1:1	1:1	1.2	0.1	84.1	7.3	Rh _{68.05} Ni _{31.95}	2.13
5	160	45	1:1	1:1	1.2	0.1	67.2	5.9	Rh _{70.04} Ni _{29.76}	2.36
6	140	45	1:1	1:1	1.2	0.1	55.7	4.4	Rh _{73.47} Ni _{29.53}	2.77
7	180	30	1:1	1:1	1.2	0.1	40.0	3.2	Rh _{63.24} Ni _{36.76}	1.72
8	180	90	1:1	1:1	1.2	0.1	100.0	8.8	Rh _{66.78} Ni _{33.22}	2.01
9	180	45	1:1	2:1	1.2	0.1	100.0	8.6	Rh _{66.89} Ni _{33.11}	2.02
10	180	45	1:1	1:2	1.2	0.1	95.0	11.2	Rh _{67.53} Ni _{32.47}	2.08
11	180	45	1:1	1:3	1.2	0.1	40.0	13.0	Rh _{69.42} Ni _{30.58}	2.27
12	180	45	1:1	1:4	1.2	0.1	20.0	13.0	$Rh_{71.75}Ni_{28.25}$	2.54
13	180	45	2:1	1:1	1.2	0.1	95.7	9.6	$Rh_{67.00}Ni_{33.00}$	2.03
14	180	45	1:2	1:1	1.2	0.1	84.5	8.0	Rh _{67.85} Ni _{32.15}	2.11
15	180	45	1:1	1:1	1.3	0.1	88.9	7.4	Rh _{67.32} Ni _{32.68}	2.06
16	180	45	1:1	1:1	1.1	0.1	63.4	9.1	$Rh_{67.01}Ni_{32.99}$	2.03
17	180	45	1:1	1:1	1.0	0.1	45.8	10.8	Rh _{67.43} Ni _{32.57}	2.07
18	180	45	1:1	1:1	1.2	0.125	100	8.6	Rh _{66.69} Ni _{33.31}	2.00
19	180	45	1:1	1:1	1.2	0.05	98.5	11.3	Rh _{66.68} Ni _{33.32}	2.00
20	180	45	1:1	1:1	1.2	0.033	97.1	13.8	Rh _{66.67} Ni _{33.33}	2.00
21	180	45	1:1	1:1	1.2	0.025	95.6	16.7	Rh _{66.71} Ni _{33.29}	2.00

Table S1 The effect of reaction parameters, including reaction temperature, reaction time, Rh/Ni precursors, margaric acid/(Rh + Ni), BTM/(Rh + Ni), $Ge(C_2H_5)_4/(Rh + Ni)$ molar ratios on the octahedrons percentage, average size, and chemical composition of Rh₂Ni nanooctahedrons.

Sample	Reaction	Reaction	Rh/Ni	margaric acid /	BTM/(Rh +	$Ge(C_2H_5)_4$	truncated	average	Chemical	Rh/Ni
	temperature / $^{\circ}C$	time / min	precursors	1-aminoheptadecane	Ni)	/(Rh + Ni)	nanooctahedrons	size / nm	composition	atomic
							percentage / %			ratio
1	200	45	1:1	1:1	1.2	0.1	100.0	15.7	Rh _{66.67} Ni _{33.33}	2.00
2	190	45	1:1	1:1	1.2	0.1	100.0	12.4	Rh _{66.79} Ni _{33.21}	2.01
3	180	45	1:1	1:1	1.2	0.1	100.0	8.7	Rh _{66.71} Ni _{33.29}	2.00
4	170	45	1:1	1:1	1.2	0.1	81.4	7.3	Rh _{66.74} Ni _{33.26}	2.10
5	160	45	1:1	1:1	1.2	0.1	65.6	5.7	Rh _{66.70} Ni _{33.30}	2.30
6	140	45	1:1	1:1	1.2	0.1	52.5	4.8	Rh _{66.70} Ni _{27.10}	2.69
7	180	30	1:1	1:1	1.2	0.1	43.1	11.8	Rh _{63.90} Ni _{36.10}	1.77
8	180	90	1:1	1:1	1.2	0.1	100.0	8.6	Rh _{67.00} Ni _{33.00}	2.03
9	180	45	1:1	2:1	1.2	0.1	50.0	9.7	Rh _{66.69} Ni _{33.31}	2.00
10	180	45	1:1	1:2	1.2	0.1	4 8. 9	11.0	Rh _{68.94} Ni _{31.06}	2.22
11	180	45	2:1	1:1	1.2	0.1	93.2	9.2	Rh _{66.78} Ni _{33.22}	2.01
12	180	45	1:2	1:1	1.2	0.1	81.3	7.9	Rh _{68.15} Ni _{31.85}	2.14
13	180	45	1:1	1:1	1.3	0.1	84.2	7.1	Rh _{67.23} Ni _{32.77}	2.05
14	180	45	1:1	1:1	1.1	0.1	66.1	8.6	Rh _{66.68} Ni _{33.32}	2.00
15	180	45	1:1	1:1	1.0	0.1	42.3	10.4	Rh _{67.74} Ni _{32.26}	2.10
16	180	45	1:1	1:1	1.2	0.125	100.0	8.7	Rh _{66.79} Ni _{33.21}	2.01
17	180	45	1:1	1:1	1.2	0.05	96.2	10.8	Rh _{66.67} Ni _{33.33}	2.00
18	180	45	1:1	1:1	1.2	0.033	94.2	13.1	Rh _{66.89} Ni _{33.11}	2.02
19	180	45	1:1	1:1	1.2	0.025	92.3	15.4	Rh _{66.67} Ni _{33.33}	2.00

Table S2 The effect of reaction parameters, including reaction temperature, reaction time, Rh/Ni precursors, margaric acid/1-aminoheptadecane, BTM/(Rh + Ni), $Ge(C_2H_5)_4/(Rh + Ni)$ molar ratios on the truncated octahedrons percentage, average size, and chemical composition of Rh₂Ni truncated nanooctahedrons.

Sample	Reaction	Reaction time	Rh/Ni	1-aminoheptadecane	BTM/(Rh +	$Ge(C_2H_5)_4/(Rh$	Cubes	average size	Chemical	Rh/Ni
	temperature / °C	/ min	precursors	/(Rh + Ni)	Ni)	+ Ni)	percentage / %	/ nm	composition	atomic ratio
1	200	45	1:1	1:1	1.2	0.1	100.0	13.8	Rh _{66.71} Ni _{33.29}	2.00
2	190	45	1:1	1:1	1.2	0.1	100.0	11.0	Rh _{66.67} Ni _{33.33}	2.00
3	180	45	1:1	1:1	1.2	0.1	100.0	8.5	Rh _{66.69} Ni _{33.31}	2.00
4	170	45	1:1	1:1	1.2	0.1	78.4	6.2	Rh _{66.64} Ni _{33.36}	2.09
5	160	45	1:1	1:1	1.2	0.1	63.5	5.3	Rh _{66.04} Ni _{33.96}	2.23
6	140	45	1:1	1:1	1.2	0.1	52.1	3.6	Rh _{72.30} Ni _{27.70}	2.61
7	180	30	1:1	1:1	1.2	0.1	43.4	2.5	Rh _{62.69} Ni _{37.31}	1.68
8	180	90	1:1	1:1	1.2	0.1	90.0	9.8	Rh _{67.00} Ni _{33.00}	2.03
9	180	45	1:1	2:1	1.2	0.1	100.0	8.7	Rh _{66.68} Ni _{33.32}	2.00
10	180	45	1:1	1:2	1.2	0.1	97.0	9.8	Rh _{68.94} Ni _{31.06}	2.22
11	180	45	1:1	1:3	1.2	0.1	43.2	11.2	Rh _{70.59} Ni _{29.41}	2.40
12	180	45	1:1	1:4	1.2	0.1	17.2	13.0	$Rh_{71.75}Ni_{28.25}$	2.54
13	180	45	2:1	1:1	1.2	0.1	92.7	8.9	Rh _{67.23} Ni _{32.77}	2.05
14	180	45	1:2	1:1	1.2	0.1	82.3	6.7	$Rh_{68.25}Ni_{31.75}$	2.15
15	180	45	1:1	1:1	1.3	0.1	89.4	6.4	Rh _{67.11} Ni _{32.89}	2.04
16	180	45	1:1	1:1	1.1	0.1	61.9	7.6	Rh _{66.79} Ni _{33.21}	2.01
17	180	45	1:1	1:1	1.0	0.1	47.0	8.9	Rh _{67.64} Ni _{32.36}	2.09
18	180	45	1:1	1:1	1.2	0.125	100.0	8.7	Rh _{66.89} Ni _{33.11}	2.02
19	180	45	1:1	1:1	1.2	0.05	93.2	9.8	Rh _{66.44} Ni _{33.56}	1.98
20	180	45	1:1	1:1	1.2	0.033	91.1	12.3	Rh _{66.69} Ni _{33.31}	2.00
21	180	45	1:1	1:1	1.2	0.025	89.2	13.9	Rh66 56Ni33 44	1.99

Table S3 The effect of reaction parameters, including reaction temperature, reaction time, Rh/Ni precursors, 1-aminoheptadecane/(Rh + Ni), BTM/(Rh + Ni), $Ge(C_2H_5)_4/(Rh + Ni)$ molar ratios on the cubes percentage, average size, and chemical composition of Rh₂Ni nanocubes.

Samples	Temperature / K	H ₂ generation volume / mL	H_2 selectivity / %	Time / min	TOF / min ⁻¹	TTON	ATOF / min ⁻¹
Rh ₂ Ni nanooctahedrons/C in this work	293	2195.2	100.0	21	15.7	27, 723	15.4
Rh ₂ Ni truncated nanooctahedrons/C in this work	293	2041.5	93.0	31	10.6	-	-
Rh ₂ Ni nanocubes/C in this work	293	1756.6	80.0	54	6.1	-	-
Rh ₅₈ Ni ₄₂ @MIL-101 40	323	141.4	100.0	7	5.73	-	-
Rh-Cu nanoframe ⁷³	298	44.8	31.4	300	0.56		
In situ RhNiB ³⁹	298	89.6	100.0	22	-	-	-
Rh/Ni@SiO ₂ ³⁰	298	91.7	99.4	90	1.1	-	-
In situ Rh ₄ Ni ⁸	298	89.6	100.0	160	0.25	-	-
In situ Rh _{4.69} Ni/graphene ¹⁵	298	89.6	100.0	49	1.91	-	-
Ni ₆₄ Pt ₃₆ /MIL-96 ²⁹	298	141.4	100.0	12	1.91		
Ni ₈₈ Pt ₁₂ @MIL-101 ³¹	298	87.8	100.0	42	1.09	-	-
$Ni_{87}Pt_{13}/meso-Al_2O_3^{43}$	323	89.6	100.0	5	2.67		
In situ Ni _{0.93} Pt _{0.07} ⁹	298	89.6	100.0	190	0.0021	-	-
NiPt _{0.057} /Al ₂ O ₃ ²¹	303	70.2	98.0	11.5	0.28	-	-
Amorphous Ni _{0.9} Pt _{0.1} /Ce ₂ O ₃ ²⁵	298	172.0	100.0	43	0.47	-	-
In situ Ni _{0.95} Ir _{0.05} ²⁷	298	89.6	100.0	390	0.26	-	-
Pt _{0.6} Ni _{0.4} /PDA-Rgo ⁴⁶	293	-	100.0	3.5	11.43	-	-
Ni ₈₄ Pt ₁₆ /graphene ⁴⁷	298	87.8	100.0	42	2.22	-	-
Ni@NiePt/La ₂ O ₃ ⁴⁸	323	-	100.0	2.6	5.20	-	-
Ni ₈₅ Ir ₁₅ @MIL-101 ⁴⁵	298	-	100.0	-	0.4		
In situ $Ni_{0.6}Pd_{0.4}$ ¹⁴	298	71.7	80.0	300	-	-	-
NiFe ¹³	298	89.6	100.0	190	-	-	-
Ni-Al ₂ O ₃ -HT ¹⁶	303	-	93.0	70	0.033	-	-

Table S4 Catalytic performance of different catalysts for decomposition of hydrazine in aqueous solution to produce H₂

Ni-0.080CeO ₂ 44	323	71.7	99.0	10	0.86		
NiIr _{0.059} /Al ₂ O ₃ ²⁷	303		99.0	12.5	0.21	-	-
Mondispersed Ni ₃ Fe nanospheres /C 22	293	224.0	100.0	27	9.26	15840	8.8
NiMoB-La(OH) ₃ ²⁴	323	136.0	100.0	15	0.24	-	-
Ni _{0.6} Fe _{0.4} Mo ⁴²	323	89.6	100.0	15	0.48	-	-
$Ni_{30}Fe_{30}Pd_{40}^{49}$	323	224.0	100.0	27	0.36	-	-
Co-B honeycomb ²¹	298	1872.6	41.8	13	12.6	18360	10.2
Co-B nanospheres ¹¹	298	954.2	21.3	23	5.34	-	-
CoB _{0.358} N _{0.286} H _{0.251} nanowires ³⁶	293	2240.0	100.0	17	76.0	133020	73.9
9.86wt.%Fe-B/WCNTs ²³	298	4345.6	97.0	15.2	67.2	114480	63.6

Figure S1. (a)The high resolution STEM (HR-STEM) image of a single Rh₂Ni nanooctahedron; (b, c) Corresponding HR-STEM images of the regions marked in (a).

Figure S2. The XRD patterns of the as-prepared (a) Rh nano-octahedrons; (b) Rh_2Ni nano-octahedrons; (c) Ni nano-octahedrons.

c

а

d

Figure S3. (a) The high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM); (b) Rh/Ni atomic ratios recorded along the white cross-sectional compositional line shown in (a); (c) the Energy-dispersive X-ray spectroscopy (EDS) at points 1-3 in (a); (d)-(f)the elemental maps of the as-prepared Rh_2Ni nano-octahedrons

Figure S4. *In-situ* overall XPS spectra of (a) Rh, (b) Ni and (c) the as-prepared Rh_2Ni nano-octahedrons in this work.

Figure S5. *In-situ* Rh3d XPS spectra of (a) Rh and (b) the as-prepared Rh₂Ni nanooctahedrons in this work.

Figure S6. *In-situ* Ni2p XPS spectra of (a) Ni and (b) the as-prepared Rh₂Ni nanooctahedrons in this work.

Figure S7. Depth profile curves obtained using X-ray photoelectron spectroscopy of the as-prepared Rh_2Ni nanooctahedrons in this work.

Figure S8. STEM images of the as-prepared Rh₂Ni: (a) without Ge(C₂H₅)₄; (b) without margaric acid

Figure S9. The Rh⁰ and Ni⁰ percentage in all Rh and Ni species obtained from the *in-situ* XPS measurement during the preparation process of Rh₂Ni NCs with or without the presence of $Ge(C_2H_5)_4$, respectively.

Figure S10. (a) Overall XPS spectrum and (b) Ge 3d spectrum for the reaction residue after the preparation of Rh_2Ni nanooctahedrons.

Figure S11. The Ge^0 percentage in all Ge species obtained from the *in-situ* XPS measurement during the preparation process of Rh₂Ni NCs.

Figure S12. FT-IR spectra of (a) margaric acid; (b) the as-prepared Rh_2Ni nanooctahedrons only washed with water; (c) the as-prepared Rh_2Ni nanooctahedrons washed with ethanol; and (d) commercial Rh_2Ni NPs.

(a)

(b)

(c)

(d)

(e)

Figure S13. STEM images of Rh₂Ni synthesized by varying the amounts of margaric acid: (a) 0.01 mmol; (b) 0.025 mmol,, (c) 0.05 mmol, (d) 0.075 mmol and (d) 0.1 mmol, respectively.

(c)

Figure S14. STEM images of the Rh_2Ni NCs prepared using (a) $Ni(acac)_2$; (b) NiC_2O_4 and (c) $NiCl_2$ as the iron precursor.

(a)

(b)

(c)

(d)

(e)

Figure S15. STEM images of the Rh₂Ni NCs synthesized by varying the molar ratio of $Ge(C_2H_5)_4/(Rh + Ni) = (a)1:40$, (b)1:30, (c)1:20, (d)1:10 and (e)1:8, respectively.

(a)

(b)

(c)

Figure S16. STEM images of Rh_2Ni synthesized by varying the molar ratio of margaric acid /1-aminoheptadecane : (a) 2, (b) 1, (c) 0.5, respectively.

Figure S17. FT-IR spectra of (a) margaric acid; (b) 1-aminoheptadecane; (c) the as-prepared Rh_2Ni nanooctahedrons with the molar ratio of 2 for margaric acid /1-aminoheptadecane only washed with water; (d) the as-prepared Rh_2Ni nanooctahedrons with the molar ratio of 1 for margaric acid /1-aminoheptadecane only washed with water; (e) the as-prepared Rh_2Ni nanooctahedrons with the molar ratio of 0.5 for margaric acid /1-aminoheptadecane only washed with water; (f) the as-prepared Rh_2Ni nanooctahedrons with the molar ratio of 2 for margaric acid /1-aminoheptadecane only washed with water; (f) the as-prepared Rh_2Ni nanooctahedrons with the molar ratio of 2 for margaric acid /1-aminoheptadecane washed with ethanol; (g) the as-prepared Rh_2Ni nanooctahedrons with the molar ratio of 1 for margaric acid /1-aminoheptadecane washed with ethanol; (h) the as-prepared Rh_2Ni nanooctahedrons with the molar ratio of 0.5 for margaric acid /1-aminoheptadecane washed with ethanol; (h) the as-prepared Rh_2Ni nanooctahedrons with the molar ratio of 0.5 for margaric acid /1-aminoheptadecane washed with ethanol; (h) the as-prepared Rh_2Ni nanooctahedrons with the molar ratio of 0.5 for margaric acid /1-aminoheptadecane washed with ethanol; (h) the as-prepared Rh_2Ni nanooctahedrons with the molar ratio of 0.5 for margaric acid /1-aminoheptadecane washed with ethanol; (h) the as-prepared Rh_2Ni nanooctahedrons with the molar ratio of 0.5 for margaric acid /1-aminoheptadecane washed with ethanol; (h) the as-prepared Rh_2Ni nanooctahedrons with the molar ratio of 0.5 for margaric acid /1-aminoheptadecane washed with ethanol; (h) the as-prepared Rh_2Ni nanooctahedrons with the molar ratio of 0.5 for margaric acid /1-aminoheptadecane washed with ethanol; (h) the as-prepared Rh_2Ni nanooctahedrons with the molar ratio of 0.5 for margaric acid /1-aminoheptadecane washed with ethanol; (h) the as-prepared Rh_2Ni nanooctahedrons with the molar ratio of 0.5 for margaric acid /1-aminoheptadecane washed wit

Figure S18. (a)The high resolution STEM (HR-STEM) image of a single Rh_2Ni trunked nanooctahedron; (b, c) Corresponding HR-STEM images of the regions marked in (a).

Figure S19. XPS Depth profile curves obtained using X-ray photoelectron spectroscopy of the as-prepared Rh₂Ni trunked nanooctahedrons in this work.

Figure S20. The Rh⁰ and Ni⁰ percentage in all Rh and Ni species obtained from the *in-situ* XPS measurement during the preparation process of Rh₂Ni NCs with or without the presence of $Ge(C_2H_5)_4$, respectively.

Figure S21. The elemental maps of the as-prepared Rh₂Ni trunked nanooctahedrons in this work.

(c)

(d)

(e)

Figure S22. STEM images of Rh₂Ni synthesized by varying the amounts of 1-aminoheptadecane: (a) 0.01 mmol; (b) 0.025 mmol, (c) 0.05 mmol, (d) 0.075 mmol and (d) 0.1 mmol, respectively.

Figure S23. FT-IR spectra of (a) 1-aminoheptadecane; (b) the as-prepared Rh_2Ni nanocubes only washed with water; (c) the as-prepared Rh_2Ni nanocubes washed with ethanol; and (d) commercial Rh_2Ni NPs.

Figure S24. (a)The high resolution STEM (HR-STEM) image of a single Rh₂Ni nanocube; (b, c) Corresponding HR-STEM images of the regions marked in (a).

Figure S25. XPS Depth profile curves obtained using X-ray photoelectron spectroscopy of the as-prepared Rh₂Ni nanocubes in this work.

Figure S26. The Rh⁰ and Ni⁰ percentage in all Rh and Ni species obtained from the *in-situ* XPS measurement during the preparation process of Rh₂Ni NCs with or without the presence of $Ge(C_2H_5)_4$, respectively.

20 nm

Figure S27. The elemental maps of the as-prepared Rh₂Ni nanocubes in this work.

(c)

(d)

Figure S28. (a) STEM image and (b) enlarged STEM image of the 8.6 nm Rh_2Ni nanooctahedrons supported on carbon; (c) STEM image and (d) enlarged STEM image of the 8.6 nm Rh_2Ni truncated nanooctahedrons nanospheres supported on carbon; (e) STEM image and (f) enlarged STEM image of the 8.6 nm Rh_2Ni nanocubes supported on carbon.

Figure S29. The $n(H_2 + N_2)/n(N_2H_4)$ and H_2/N_2 molar ratio versus time for 0.297 mmol of surface "clean" (a) Rh nanooctahedrons, (b) Rh₂Ni nanooctahedrons, (c) Rh₂Ni truncated nanooctahedrons, (d) Rh₂Ni nanocubes and (e) Ni nanooctahedrons supported on 30 mg carbon during the decomposition of 100 mL of hydrazine in aqueous solution with a concentration of 0.49 mol L⁻¹ at 293 K.

Figure S30. Typical UV-Vis spectra of hydrazine in aqueous solution (a) before and (b) after the completion of hydrazine decomposition reaction over surface "clean" Rh_2Ni or Rh or Ni NCs supported on carbon.

Figure S31. Mass spectral (MS) profile of (a) the gases released from the complete decomposition of hydrazine in aqueous solution at room temperature over surface "clean" Rh_2Ni nanooctahedrons/C, (b) the gases released from the complete decomposition of hydrazine in aqueous solution at room temperature over Rh_2Ni truncated nanooctahedrons/C, (c) the gases released from the complete decomposition of hydrazine in aqueous solution at room temperature over Rh_2Ni truncated nanooctahedrons/C, (c) the gases released from the complete decomposition of hydrazine in aqueous solution at room temperature over Rh_2Ni truncated nanooctahedrons/C, (c) the gases released from the complete decomposition of hydrazine in aqueous solution at room temperature over Rh_2Ni nanocubes/C; (d) H_2 ; (e) N_2 ; (f) NH_3 ; (g) H_2O ; (h) NH_3 + H_2O ; and (i) carrier Ar.

Figure S32. Plots of volume of hydrogen generated versus time during the hydrazine decomposition over 0.297 mmol of surface "clean" (a) Rh₂Ni nanooctahedrons, (b) Rh₂Ni truncated nanooctahedrons and (c) Rh₂Ni nanocubes supported on 30 mg carbon at different temperatures in the range 293 K-333 K ($[N_2H_4] = 0.49 \text{ mol } L^{-1}$).

Figure S33. The plot of lnk versus 1/T during the hydrazine decomposition over 0.297 mmol of surface "clean" (a) Rh₂Ni nanooctahedrons, (b) Rh₂Ni truncated nanooctahedrons and (c) Rh₂Ni nanocubes supported on 30 mg carbon at different temperatures in the range 293 K–333 K ([N₂H₄] = $0.49 \text{ mol } \text{L}^{-1}$).

Figure S34. The differential heat of H₂ adsorption distribution histograms of surface "clean" (a) Rh₂Ni nanocubes, (b) Rh₂Ni truncated nanooctahedrons and (c) Rh₂Ni nanooctahedrons.

Figure S35. Mass spectra of H_2 -TPD for surface "clean" (a) Rh_2Ni nanocubes, (b) Rh_2Ni truncated nanooctahedrons and (c) Rh_2Ni nanooctahedrons.

Figure S36. Mass spectra of NH_3 TPD-MS for (A) NH_3 desorption signal and (B) N_2 desorption signal for surface "clean" (a) Rh_2Ni nanocubes, (b) Rh_2Ni truncated nanooctahedrons and (c) Rh_2Ni nanooctahedrons.

Figure S37. Plots of TOF value and hydrogen selectivity versus NaOH concentration over 0.297 mmol surface "clean" (a) Rh₂Ni nanocubes, (b) Rh₂Ni truncated nanooctahedrons and (c) Rh₂Ni nanooctahedrons supported on 30mg carbon at 293 K.

Figure S38. Hydrogen selectivity versus N_2H_4 concentrations for the decomposition of N_2H_4 over 0.297 mmol surface "clean" Rh₂Ni nanooctahedrons supported on 30mg carbon at 293 K.

Figure S39. Hydrogen released from 20mL N_2H_4 solution with different concentrations (a) 0.01, (b) 0.02, (c) 0.03, (d) 0.05, (e) 0.075, (f) 0.1, (g) 0.2, (h) 0.5, (i) 1, (j) 5, (k) 7.5 and(l) 10.0molL⁻¹ in the presence of 0.297 mmol surface "clean" Rh₂Ni nanooctahedrons supported on 30mg carbon at 293 K.

Figure S40. Viscosity versus N₂H₄ concentrations at 293 K.

Figure S41. Solution gravimetric hydrogen densities versus N_2H_4 concentrations for the decomposition of N_2H_4 over 0.297 mmol surface "clean" Rh₂Ni nanooctahedrons supported on 30mg carbon at 293 K.

Figure S42. (a) STEM image and (b) enlarged STEM image of the deactivated Rh_2Ni nanooctahedrons/C; (c) STEM image and (d) enlarged STEM image of the deactivated Rh_2Ni nanooctahedrons/C after reactivation by solution plasma process.

Figure S43. XRD profiles of (a) Rh nanooctahedrons; (b) the deactivated Rh_2Ni nanooctahedrons/C; (c) the deactivated Rh_2Ni nanooctahedrons /C after reactivation by solution plasma process; (d) Ni nanooctahedrons.

Figure S44. *in-situ* (A) Overall XPS spectra; (B) Ni2p3/2 XPS spectra; (C) Rh 3d XPS spectra; and (D) O1s XPS spectra of the deactivated Rh_2Ni nanooctahedrons /C (a) before reactivation and (b) after reactivation by solution plasma process.

Figure S45. Time profiles for decomposition of hydrazine in aqueous solution in the presence (a) fresh and (b) reactivated Rh_2Ni nanooctahedrons /C

Figure S46. Hysteresis loop and magnetic properties of Ni nanooctahedrons.

Figure S47. Heck-type coupling reaction between cyclohexyliodide and styrene over catalysts.

Figure S48. Dependency of the cyclohexyliodide conversion and the (E)-(2-cyclohexylvinyl)benzene selectivity on reaction time over 20.0 wt.% Rh₂Ni nanooctahedrons/C and PVP-Rh₂Ni nanooctahedrons. Reaction conditions: a catalyst containing 10 mg Rh₂Ni, cyclohexyliodide (5.0 mmol), alkenes (6.0 mmol), Na₂CO₃ (7.5 mmol), DMF (10 mL), T = 353 K, stirring rate = 800 rpm.

Figure S49. Hydrogenation of LA to GAL over catalysts

Figure S50. Recycling tests of 20.0 wt.% Rh₂Ni nanooctahedrons/C and Brij-93-Rh₂Ni nanooctahedrons for LA hydrogenation to GAL. Reaction conditions: catalyst containing 10 mg of Rh₂Ni nanooctahedrons, 20 mmol of LA, 50 mL of n-dodecane, PH₂ = 4.2 MPa H₂, T = 413 K, reaction time = 2 h, stirring rate = 1100 rpm.