Supporting Information for

Three-dimensional WS₂ Nanosheet Networks for H₂O₂ Produced for Cell Signaling

Jing Tang,^{a,†} Yingzhou Quan,^{a,†} Yueyu Zhang,^{b,†} Min Jiang,^c Abdullah M. Al-Enizi,^d Biao Kong,^a Tiance An,^a Wenshuo Wang,^e Limin Xia,^e Xingao Gong^b and Gengfeng Zheng^{a,*}

^aLaboratory of Advanced Materials, Department of Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai 200433, China

^bKey Laboratory of Computational Physical Sciences, Ministry of Education, State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China

^cInstitute of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China

^dDepartment of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.

^eDepartment of Cardiovascular Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China

* Correspondence to: gfzheng@fudan.edu.cn (G.Z.)

[†] J.T., Y.Q. and Y.Z. contributed equally to this work.

Supporting Figures

Fig. S1. Cyclic voltammograms of (a) carbon fiber, (b) WS_2 /carbon fiber in PBS, (c) carbon fiber, and (d) WS_2 /carbon fiber in PBS with and without 0.1 mM H_2O_2 in the N_2 saturated 0.1 M PBS at a scan rate of 50 mV s⁻¹.

Fig. S2. ROS selectivity obtained at -0.25 V versus Ag|AgCl toward the addition of H₂O₂, O₂⁻⁻ and ClO⁻.

Fig.S3. Amperometric responses obtained at the WS₂/carbon fiber electrodes located near in living RAW 264.7 macrophage cells at applied potentials of -0.25 V versus Ag/AgCl in 0.1 M PBS (pH 7.4) with the addition of 0.3 μ M fMLP and 60 U mL⁻¹ (final concentration) of catalase.

Materials	Detection limit	Reference
3D WS ₂	2 nM	Our work
Pt ₄₈ Pd ₅₂ -Fe ₃ O ₄ on carbon	0.005 μΜ	Ref. S1
HRP-Au-chitosan-clay	9 μΜ	Ref. S2
Pt-MnO-graphene	0.05 µM	Ref. S3
AuCu nanowires	0.002 µM	Ref. S4
Au/MnO NPs	0.008 µM	Ref. S5
MoS ₂ Nanoparticles	0.0025 μM	Ref. S6
Hydrogel-Stabilized Enzyme	50 nM	Ref. S7
Au-TiO ₂	2 nM	Ref. S8
PCL-2 and IETDC probes	0.037 µM	Ref. S9
CdS–Carbon Nanotube Nanocomposite	0.08 µM	Ref. S10

Table S1. Comparison of the electrochemical detection limits of different H₂O₂ sensors.

References

- (S1) Sun, X.; Guo, S.; Liu, Y.; Sun, S. Nano Lett. 2012, 12, 4859-4863.
- (S2) Zhao, X.; Mai, Z.; Kang, X.; Zou, X. Biosens. Bioelectron. 2008, 23, 1032-1038.
- (S3) Xiao, F.; Li, Y.; Zan, X.; Liao, K.; Xu, R.; Duan, H. Adv. Funct. Mater. 2012, 22, 2487-2494.
- (S4) Wang, N.; Han, Y.; Xu, Y.; Gao, C.; Cao, X. Anal. Chem. 2014, 87, 457-463.

- (S5) Zhu, H.; Sigdel, A.; Zhang, S.; Su, D.; Xi, Z.; Li, Q.; Sun, S. Angew. Chem. Int. Ed. 2014, 126, 12716-12720.
- (S6) Wang, T.; Zhu, H.; Zhuo, J.; Zhu, Z.; Papakonstantinou, P.; Lubarsky, G.; Lin, J.; Li, M.
 Anal. Chem. 2013, 85, 10289-10295.
- (S7) Zhou, J., Liao, C., Zhang, L., Wang, Q. and Tian, Y. Anal. Chem. 2014, 86, 4395-4401.
- (S8) Li, X., Liu, Y., Zhu, A., Luo, Y., Deng, Z. and Tian, Y. Anal. Chem. 2010, 82, 6512-6518.
- (S9) Van de Bittner, G. C., Bertozzi, C. R. and Chang, C. J. J. Am. Chem. Soc., 2013, 135, 1783-1795.
- (S10) Wang, X. F., Zhou, Y., Xu, J. J. and Chen, H. Y. Adv. Funct. Mater., 2009, 19, 1444-1450.