

Supporting Information

Fig. S1 XRD of samples derived from TiO_2 nanosheets calcined at various temperatures. (**•**: anatase (PDF#21-1272); \bigstar : rutile (PDF#21-1276)).

Fig. S2 AFM image of the as-grown 2D TiO_2 nanosheets and the corresponding statistical thickness distribution.

Fig. S3 Roles of the addition of P123, EG, and EtOH in the synthesis of the 2D TiO_2 nanosheets. (a, g) Morphology of the products of TiO_2 synthesized from the solution without P123; (b, h) morphology of the products of TiO_2 synthesized from the solution with the addition of 1 wt% P123; (c, i) morphology of the products of TiO_2 synthesized from the solution with the addition of

20 wt% P123; (d, j) morphology of the products of TiO_2 synthesized from the solution without EG; (e, k, f, l) morphology of the products of TiO_2 synthesized from the solution with the addition of water. The results show that all of the added P123, EG, and water are crucial for the formation of 2D TiO_2 nanosheets.

Fig. S4 TG curve of the as-grown TiO_2 nanosheets, indicating the residual organic species are completely consumed at a temperature of 500°C.

0 min	dark		UV degradation			
	20 min	30 min	20 min	40 min	60 min 80 min	100 min 120 mi
					-	

Fig. S5 The photograph of adsorption process in dark and photodegradation process under UV irradiance of RhB by 2D TiO₂ nanosheets calcined at 500 °C.

Fig. S6 (a)Photodegradation curves of RhB over TiO_2 -500 and P25 TiO_2 . (b) -In (C/C₀) versus time

curves. The apparent rate constant for RhB photodegradation by TiO_2 -500 (0.0471 min⁻¹) is 4.3 times higher than that with P25 TiO_2 (0.0108 min⁻¹).

Fig. S7 (a, c) Photo-degradation rate of MO, MB by TiO_2 -500 catalyst under UV irradiation. The insets are photograph showing the corresponding photodegradation process of MO and MB. (b, d) UV-Vis absorption spectra of MO, MB with TiO_2 -500 catalyst as a function of irradiation time.