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Fig. S1 The absorption cross section of chiral Fano oligomers calculated by FEM 

simualtion under LCP (red line) and RCP (blue line).

Fig. S2 The FEM simulated scattering cross section of chiral Fano oligomers (a) 

embedded in homogeneous medium (n = 1.22) and (b) on semi-infinite substrate (n = 

1.45) under LCP (red line) and RCP (blue line).



Fig. S3 FEM simulations for the scattering cross section of chiral oligomers with 

different surrounding ellipse rotation angle. All of the main spectral features have a 

good agreement with the experimental results, and the difference between the 

experiment and simulations possibly is induced by the sample nanofabrication..

Text S1. The near-normal incident dark-field optical microscopy

Optical scattering spectra of individual structure were measured using a near-

normal incident dark-field microscope [1] (Fig. S3) with an 50* objective with a 

numerical aperture of 0.42 (MPlanApoNIR, 50*, Mitutoyo). The illumination source 

was a halogen lamp (Edmund MI-150), collimated by lens pairs and apertures, 

circular polarized with a linear polarizer (Polarizer 1) and a broadband quarter wave 

plate. Dark-field illumination is achieved by blocking the reflected incident light 

collected by the objective on the rear entrance pupil, allowing only scattered light to 

pass. The scattered light was polarized by a linear polarizer (Polarizer 2) to choose 



interested polarization. The modified scattered light was collected by a CCD-

equipped imaging spectrometer (CCD was Princeton Instruments PIXIS 400, 

monochromator is Princeton Instruments Acton SP2150), and corrected for the 

spectral efficiency of the system using a white calibration standard (Edmund).
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Schematic view of near-normal incident dark-field optical microscope.

Text S2. Calculation of the polarizabilities of a disk and an ellipse

In the coupled dipole approximation (CDA) model [2-4], the nanoparticle is 

considered as a dipole. In the far zone, the dipole fields are of the spherical-wave 

form [5]
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where r is the distance from the dipole,  is the unit vector,  is the wave r̂ 0k nk

number in the surrounding (homogeneous) medium with refractive index n, 

 is the light speed in medium, ,  is  the permittivity and 0 01     r rc 0 0



permeability in vacuum, and ,  are the relative permittivity and permeability. For  r r

a circular disk, the forward scattering electric field  can be written asFE
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where  is the polarizability of the circular disk and  is the external electric D extE

field. By using the far field calculation in FEM, we can obtain the forward scattering 

electric field at r = 1.0 m. Thus, we obtain the polarizability of the circular disk . D

For the ellipse, by forcing the external electric field along major axis and minor axis 

directions respectively, we can get the polarizability along the major axis  and maj

minor axis . In Fig. S4, we show the wavelength dependence of , ,min Re( )D Im( )D

, ,  and .Re( )maj Im( )maj minRe( ) minIm( )



The FEM calculated real and imaginary part of the polarizabilities of the disk (a-b), the major axis 

of the ellipse (c-d) and the minor axis of the ellipse (e-f).

Text S3. Calculation of extinction, scattering and absorption cross section for 

coupled dipole system

S3.1 Scattering cross section

For an in-plane electric dipole  located at the position , its ( , )j xj yjp pp ( , )xj yjr r



radiation fields at the point  in the spherical coordinate are[5]( , , ) R
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where ， ,  and the unit sin cos( )     j jr R a atan2( , ) j yj xjr r 2 2 j xj yja r r

vector  is given by .Re (sin cos ,sin sin ,cos )    Re

Inserting the expression of the electric dipole  into Eq. (S4), the  xj yjp px yp e e

electric field can be rewritten as 
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where  and  are the unit vectors along x and y directions, and the unit vectors  xe ye e

and  are given by and , e (cos cos ,cos sin , sin )      e ( sin ,cos ,0)   e

respectively. 

The total electric field from the n electric dipoles is thus
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The time-averaged flux of energy is given by the real part of the complex 

Poynting vector:
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So the total scattering power is
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Assuming an incident electric field 

，the scattering cross section is 0 ( ) ( )        x y x x y yE E E iE E iEx y x yE e e e e
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For circular polarizations (LCP and RCP), the scattering cross section is
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S3.2 Extinction cross section

When , the scattering field can be simplified as0 
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By using the optical theorem [6], which relates the extinction cross section to its 

forward scattering amplitude (in our case ), we can obtain the extinction cross 0 

section as
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For circular polarizations, the extinction cross section is
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S3.3 Absorption cross section

The absorption cross section  is the difference between the extinction cross  abs

section and the scattering cross section:

                             (S14)   abs ext sca

Text S4. Multipole expansion method

For a current source distribution, the total scattering power can be expanded as the 

sum of the multipole radiation [7, 8]. In the case of harmonic excitation , it exp( )i t

has the form
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The first two terms correspond to the electric and magnetic dipole scattering. The 

third term corresponds to the toroidal dipole scattering and the fourth term accounts 

for the coupling between the electric and toroidal dipoles. The fifth and sixth terms 

come from electric and magnetic quadrupoles. The multipole moments in the above 

equation are defined as:          
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toroidal dipole moment: 2 31 ( ) 2
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where  is the speed of light in medium,  is the current density, and .c j , , ,   x y z

In the CDA model, the j:th two-dimensional electric dipole  located ( , )j xj yjp pp

at is calculated. The electric dipole and its corresponding current density are ( , )xj yjr r

related by
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By using the electric dipole instead of the current density in the expression of the 

multipole moments, we can rewrite the components of the multipoles as: 

electric dipole moment: 
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.                                                         (S21)0zT

Thus the electric dipole  in the CDA model can be used for the ( , )j xj yjp pp

calculation of the scattering power of the multipoles, as shown in Fig. 4 in the main 

text. 
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