Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Supporting Information

for

PhI(OAc)₂-mediated functionalisation of unactivated alkenes for synthesis of pyrazoline and isoxazoline derivatives

Xiao-Qiang Hu, Guoqiang Feng, Jia-Rong Chen,* Dong-Mei Yan, Quan-Qing Zhao, Qiang Wei and Wen-Jing Xiao*

E-mail: chenjiarong@mail.ccnu.edu.cn; wxiao@mail.ccnu.edu.cn

Table of Contents

1. General Information
2. Preparation and Spectral Data of Substrates
2.1 General procedure for preparation of β , γ -unsaturated hydrazones 1
2.2 General procedure for preparation of β , γ -unsaturated oximes 3
2.3 Spectral data of β , γ -unsaturated hydrazones and oximes
3. General Procedure and Spectral Data of Products
3.1 General procedure for hydroamination of β , γ -unsaturated hydrazones
3.2 General procedure for hydroxygenation of β , γ -unsaturated oximes
3.3 General procedure for oxyamination of β , γ -unsaturated hydrazonesS6
3.4 General procedure for dioxygenation of β , γ -unsaturated oximes
3.5 Control experiments for dioxygenation of β , γ -unsaturated oximes
3.6 Try catalytic protocol
3.7 Spectral data of the cyclic products
4. Plausible Reaction Mechanism
5. ¹ H and ¹³ C NMR Spectra of Hydrazones, Oximes and the Cyclic Products

1. General Information

Unless otherwise noted, materials were purchased from commercial suppliers and used without further purification. All the solvents were treated according to general methods. Flash column chromatography was performed using 200-300 mesh silica gel. ¹H NMR spectra were recorded on 400/600 MHz spectrophotometers. Chemical shifts are reported in delta (δ) units in parts per million (ppm) relative to the singlet (0 ppm) for tetramethylsilane (TMS). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, dd = doublet of doublets, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR spectra were recorded on Varian Mercury 400 (100 MHz) with complete proton decoupling spectrophotometers (CDCl₃: 77.0 ppm, DMSO-d⁶: 39.5 ppm). Mass spectra were measured on MS spectrometer (EI) or LC/MS/MS (ESI-MS). HRMS were recorded using MALDI (TOF analyzer), ESI (TOF analyzer).

2. Preparation and Spectral Data of Substrates

To a stirred solution of 1-(p-tolyl)but-3-en-1-one (20 mmol, 1.0 eq.) in MeOH (10 mL), p-toluenesulfonyl hydrazide (30 mmol, 1.5 eq.) was added at 0 °C. The mixture was stirred at the same temperature until the reaction was completed, monitored by TLC. Then, the solvent was removed and the residue was purified by flash column chromatography to give compound **1a** as a white solid in 49% yield.

The other β , γ -unsaturated hydrazones were prepared according to the above procedure. The β , γ -unsaturated hydrazones **1a-1n** are kown compounds.^[3]

2.2 General procedure for preparation of β , γ -unsaturated oximes **3**.^[4, 5]

To a stirred solution of 1-(p-tolyl)but-3-en-1-one (10 mmol, 1.0 eq.) in EtOH (10 mL), Hydroxylammonium chloride (50 mmol, 5.0 eq.) and sodium acetate trihydrate (70 mmol, 7.0 eq) were added at 0 $^{\circ}$ C. Then, the mixture was stirred at room temperature until the reaction was completed, monitored by TLC. Then, the solvent was removed and the residue was purified by flash column chromatography to give compound **3a** as a white solid in 67% yield.

The other β , γ -unsaturated oximes were prepared according to the above procedure. The β , γ -unsaturated oximes **3a**, **3d**, **3e** and **3g** are kown compounds

References: [1] X.-Q. Hu, J.-R. Chen, Q. Wei, F.-L. Liu, Q.-H. Deng, Y.-Q. Zou and W.-J. Xiao, *Eur. J. Org. Chem.* 2014, 3082-3086.
[2] X.-Q. Hu, J.-R. Chen, S. Gao, B. Feng, L.-Q. Lu and W.-J. Xiao, *Chem. Commun.* 2013, 49, 7905-7907.
[3] X.-Q. Hu, J.-R. Chen, Q. Wei, F.-L. Liu, Q.-H. Deng, A. M. Beauchemin and W.-J. Xiao, *Angew. Chem. Int. Ed.*, 2014, 53, 12163-12167.

[4] B. Han, X.-L. Yang, R. Fang, W. Yu, C. Wang, X.-Y. Duan and S. Liu, *Angew. Chem. Int. Ed.*, 2012, **51**, 8816-8820.

[5] C. B. Tripathi and S. Mukherjee, Angew. Chem. Int. Ed., 2013, 52, 8450-8453.

2.3 Spectral data of β , γ -unsaturated hydrazones and oximes

β,γ-Unsaturated hydrazone 10

¹H NMR (400 MHz, CDCl₃) δ (ppm) δ = 7.50 – 7.44 (3 H, m), 7.07 – 7.05 (2 H, m), 6.88 (1 H, s), 5.94 (1 H, dd, J = 17.4 Hz, 10.6 Hz), 5.09 (1 H, d, J = 10.6 Hz), 5.02 (1 H, d, J = 17.4 Hz), 3.11 (3 H, s), 1.30 (6 H, s). ¹³C NMR (100 MHz, CDCl₃) δ = 162.52, 143.80, 131.43, 129.36, 129.14, 127.72, 113.27, 44.37, 38.42, 25.16. M.P.: 101 – 102 °C. HRMS

(ESI): $m/z [M+H]^+$ calcd for $C_{13}H_{18}N_2O_2S$: 267.1162; found: 267.1162.

β,γ-Unsaturated hydrazone 1p

¹H NMR (600 MHz, CDCl₃) δ (ppm) δ = 7.32 – 7.29 (2 H, m), 6.97 (2 H, d, *J* = 7.9 Hz), 6.95 (1 H, s), 5.97 (1 H, dd, *J* = 17.4 Hz, 10.6 Hz), 5.11 (1 H, d, *J* = 10.6 Hz), 5.05 (1 H, d, *J* = 17.4 Hz), 3.13 (3 H, s), 2.43 (3 H, s), 1.32 (6 H, s). ¹³C NMR (150 MHz, CDCl₃) δ = 162.78, 143.83, 139.33, 129.79, 128.23, 127.56, 113.14, 44.36, 38.37, 25.08, 21.17.

M.P.: 83 – 84 °C. HRMS (ESI): $m/z [M+Na]^+$ calcd for $C_{14}H_{20}N_2O_2S$: 303.1138; found: 303.1121.

β,γ-Unsaturated hydrazone 1q

¹H NMR (600 MHz, CDCl₃) δ (ppm) δ = 7.43 (2 H, d, J = 8.3 Hz), 6.99 (2 H, d, J = 8.3 Hz), 6.84 (1 H, s), 5.87 (1 H, dd, J = 17.4 Hz, 10.6 Hz), 5.08 (1 H, d, J = 10.6 Hz), 4.99 (1 H, d, J = 17.4 Hz), 3.08 (3 H, s), 1.26 (6 H, s). ¹³C NMR (150 MHz, CDCl₃) δ = 161.31, 143.49, 135.54, 129.71, 129.43, 129.30, 113.71, 44.41, 38.38, 25.05. M.P.: 113

-114 °C. HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₃H₁₇ClN₂O₂S: 323.0591; found: 323.0601.

β,γ-Unsaturated oxime 3b

¹H NMR (600 MHz, CDCl₃) δ (ppm) δ = 9.52 (1 H, s), 7.60 (2 H, d, *J* = 8.4 Hz), 7.42 (2 H, d, *J* = 8.4 Hz), 6.01 – 5.95 (1 H, m), 5.21 (1 H, dd, *J* = 17.2 Hz, 1.5 Hz), 5.13 (1 H, dd, *J* = 10.1 Hz, 1.3 Hz), 3.62 (2 H, d, *J* = 6.1 Hz), 1.35 (9 H, s). ¹³C NMR (100 MHz, CDCl₃) δ = 156.45, 152.43, 132.69, 132.20, 126.03, 125.46, 117.00, 34.64,

31.18, 31.10. M.P.: 88 – 89 °C. HRMS (ESI): m/z $[M+H]^+$ calcd for $C_{14}H_{19}NO$: 218.1539; found: 218.1545.

β,γ- Unsaturated oxime 3c

¹H NMR (600 MHz, CDCl₃) δ (ppm) δ = 9.01 (1 H, s), 7.73 (2 H, d, J = 8.2 Hz), 7.62 (2 H, d, J = 8.2 Hz), 5.94 – 5.87 (1 H, m), 5.15 (1 H, d, J = 17.2 Hz), 5.12 (1 H, d, J = 10.2 Hz), 3.59 (2 H, d, J = 6.1 Hz). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) δ = 156.10, 138.89, 131.69, 131.42, 131.37, 131.04, 130.72, 127.99, 126.71, 125.53, 125.29,

122.58, 119.88, 117.59, 31.08. M.P.: 54 – 55 °C. HRMS (ESI): $m/z [M+H]^+$ calcd for $C_{11}H_{10}F_3NO$: 230.0787; found: 230.0791.

β,γ-Unsaturated oxime 3f

^{HO}_N ^IH NMR (400 MHz, CDCl₃) δ (ppm) δ = 9.06 (1 H, s), 7.60 – 7.58 (2 H, m), 7.04 (2 H, t, J = 8.7 Hz), 5.93 – 5.86 (1 H, m), 5.14 (1 H, dd, J = 17.2 Hz, 1.5 Hz), 5.09 (1 H, dd, J = 10.1 Hz, 1.4 Hz), 3.55 (2 H, d, J = 6.1 Hz). ¹³C NMR (100 MHz, CDCl₃) δ = 164.67,

162.19, 156.04, 131.83, 131.67, 131.63, 128.28, 128.20, 117.28, 115.64, 115.43, 31.14. M.P.: 45 - 46 °C. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₀H₁₀FNO: 180.0819; found: 180.0819.

β,γ-Unsaturated oxime 3h

¹H NMR (600 MHz, CDCl₃) δ (ppm) δ = 7.50 (1 H, s), 7.21 (2 H, d, *J* = 7.7 Hz), 7.01 (2 H, d, *J* = 7.7 Hz), 5.97 (1 H, dd, J = 17.3 Hz, 10.5 Hz), 5.06 (1 H, d, *J* = 10.6 Hz), 5.02 (1 H, d, *J* = 17.4 Hz), 2.37 (3 H, s), 1.23 (6 H, s). ¹³C NMR (150 MHz, CDCl₃) δ = 164.40, 143.96, 137.70, 130.19, 128.55, 127.73, 112.94, 43.24, 25.26, 21.26. M.P.:

 $165 - 166 \,^{\circ}$ C. HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₃H₁₇NO: 226.1206; found: 226.1202.

β,γ-Unsaturated oxime 3i

HO.

HRMS (ESI): $m/z [M+Na]^+$ calcd for $C_{12}H_{14}CINO$: 246.0656; found: 246.0653.

3. General Procedure and Spectral Data of Products

3.1 General procedure hydroamination of β,γ-unsaturated hydrazones

1a (0.3 mmol, 98.5 mg) and DABCO (0.6 mmol, 67.3 mg) were dissolved in freshly distilled THF (4.5 mL) under Ar. Then, $PhI(OAc)_2$ (0.45 mmol, 144.9 mg) was added to the mixture. After that, the solution was stirred at room temperature about 2 h until the reaction was completed as monitored by TLC analysis. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate 10:1~5:1) directly to give the desired product **2a** in 61% yield as a white solid.

3.2 General procedure hydroxygenation of β,γ-unsaturated oximes

3a (0.3 mmol, 52.5 mg) and DABCO (0.6 mmol, 67.3 mg) were dissolved in freshly distilled THF (4.5 mL) under Ar. Then, PhI(OAc)₂ (0.45 mmol, 144.9 mg) was added to the mixture. After that, the solution was stirred at room temperature about 2 h until the reaction was completed as monitored by TLC analysis. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate 20:1~10:1) directly to give the desired product **4a** in 67% yield as a white solid.

3.3 General procedure for oxyamination of β,γ-unsaturated hydrazones

1j (0.3 mmol, 88.2 mg), DABCO (0.6 mmol, 67.3 mg), TEMPO (2.0 eq.) were dissolved in freshly distilled THF (4.5 mL) under Ar. Then, $PhI(OAc)_2$ (0.45 mmol, 144.9 mg) was added to the mixture. After that, the solution was stirred at room temperature about 2 h until the reaction was completed as monitored by TLC analysis. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate 20:1~10:1) directly to give the TEMPO adduct **5a** in 52% yield as a yellow oil.

3.4 General procedure for dioxygenation of β,γ-unsaturated oximes

3a (0.3 mmol, 52.5 mg), DABCO (0.6 mmol, 67.3 mg), TEMPO (2.0 eq.) were dissolved in freshly distilled THF (4.5 mL) under Ar. Then, $PhI(OAc)_2$ (0.45 mmol, 144.9 mg) was added to the mixture. After that, the solution was stirred at room temperature about 2 h until the reaction was completed as monitored by TLC analysis. The crude product was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate 20:1~10:1) directly to give the TEMPO adduct **6a** in 95% yield as a yellow oil.

3.5 Control experiments for dioxygenation of β,γ-unsaturated oximes

Table S1. Control experiments

Entry	Solvent	Oxidant	Base	Temperature	Yield ^[a] [%]
1	THF	PhI(OAc) ₂	DABCO	25 °C	95
2 ^[b]	THF	-	DABCO	25 °C	trace
3 ^[c]	THF	PhI(OAc) ₂	-	25 °C	27
4 ^[d]	THF	PhI(OAc) ₂	DABCO	60 °C	10

[a] Isolated yield. [b] Without PhI(OAc)₂. [c] Without Base. [d] Conducted the reaction at 60 °C for 24 h

The results of Table S1 revealed that the dioxygenation of β , γ -unsaturated oximes is a radical process mediated by PhI(OAc)₂. In this type of reaction, oxime radicals were directly generated from the oxidation of β , γ -unsaturated oximes by PhI(OAc)₂ under basic condition at room temperature.

3.6 Try catalytic protocol

 Table S2. Catalytic protocol^a

Entry	Solvent	Oxidant	Time (h)	Temperature	Yield ^[a] [%] ^b
1	THF	oxone	4	25 °C	0

2	THF	IBX	4	25 °C	0
3	THF	mCPBA	4	25 °C	15
^a Unless other	wise noted, reactions w	ere carried out with 1a (0.1	mmol), PhI (0.005	mmol), AcOH (0.2	mmol), Oxidant

mmol) in the THF (1.0 mL) at 25 °C. ^b Determined by GC using biphenyl as internal standard.

We preliminarily examined catalytic protocol by using different oxidants such as oxone, IBX and mCPBA. However, we couldn't observe the hydroamination product 2a when using oxone and IBX as oxidants (Table S2, entries 1-2). Fortunately, by using *m*CPBA as the oxidant, the desired product can be obtained in 15% GC yield. Further studies to improve the reaction efficiency are ongoing in our laboratory.

3.7 Spectral data of the new cyclic products

Product 2o

Ms Yield of **2o** : 79% as a white oil. ¹H NMR (400 MHz, CDCl₃) δ (ppm) δ = 7.72 (2 H, d, J = 7.2 Hz), 7.41 (3 H, t, J = 6.9 Hz), 3.71 – 3.66 (1 H, m), 3.10 (3 H, s), 1.48 (3 H, d, J = 6.5 Hz), 1.39 (3 H, s), 1.24 (3 H, s). ¹³C NMR (100 MHz, CDCl₃) δ = 164.66, 130.60, 129.98, 128.44, 127.52, 67.57, 51.38, 35.95, 24.30, 19.10, 13.27. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₃H₁₈N₂O₂S: 267.1162; found: 267.1162.

Product 2p

Yield of $2\mathbf{p}$: 73% as a white oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) δ = 7.63 (2 H, d, J = 8.2 Hz), 7.20 (2 H, d, J = 8.0 Hz), 3.65 – 3.63 (1 H, m), 3.08 (3 H, s), 2.38 (3 H, s), 1.48 (3 H, d, J = 6.5 Hz), 1.38 (3 H, s), 1.23 (3 H, s). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) δ = 164.61, 140.22, 129.11, 127.65, 127.40, 67.49, 51.29, 35.70, 24.30, 21.28,

19.12, 13.24. HRMS (EI): $m/z [M + Na]^+$ calcd for $C_{14}H_{20}N_2O_2S$: 303.1138; found: 303.1038.

Product 2q

Yield of $2\mathbf{q}$: 92% as a white oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) δ = 7.65 (2 H, d, J = 8.2 Hz), 7.34 (2 H, d, J = 8.2 Hz), 3.67 – 3.64 (1 H, m), 3.07 (3 H, s), 1.45 (3 H, d, J = 6.4 Hz), 1.35 (3 H, s), 1.19 (3 H, s). ¹³C NMR (150 MHz, CDCl₃) δ (ppm) δ = 163.42, 136.01, 128.97, 128.75, 128.67, 67.60, 51.16, 35.97, 24.18, 18.98, 13.15. HRMS (EI):

 $m/z [M + Na]^+$ calcd for $C_{13}H_{17}ClN_2O_2S$: 323.0597; found: 323.0591.

Product 4a

Yield of 4a : 67% as a white oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) δ = 7.58 (2 H, d, J = 8.1 Hz, 7.23 (2 H, d, J = 8.0 Hz), 4.92 - 4.86 (1 H, m), 3.44 (1 H, dd, J = 16.3 Hz, 10.1 Hz), 2.94 (1 H, dd, J = 16.3 Hz, 8.0 Hz), 2.40 (3 H, s), 1.45 (3 H, d, J = 6.2 Hz). ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3) \delta$ (ppm) $\delta = 156.32, 139.99, 129.27, 127.04, 126.46, 77.32, 41.63, 21.33, 20.91.$

HRMS (EI): $m/z [M + H]^+$ calcd for $C_{11}H_{13}NO$: 176.1070; found: 176.1078.

Product 4b

Yield of **4b** : 66% as a white oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) δ = 7.62 (2 H, d, J = 8.3 Hz), 7.44 (2 H, d, J = 8.3 Hz), 4.90 – 4.86 (1 H, m), 3.44 (1 H, dd, J = 16.2Hz, 10.1 Hz), 2.94 (1 H, dd, J = 16.2 Hz, 7.9 Hz), 1.43 (3 H, d, J = 6.2 Hz), 1.34 (9 H, s). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) δ = 156.23, 153.17, 126.98, 126.33, 125.53, 77.32, 41.62, 34.75, 31.10, 20.93. HRMS (EI): $m/z [M + H]^+$ calcd for C₁₄H₁₉ClNO: 218.1539; found: 218.1549.

Product 4c

Yield of 4c : 69% as a white solid. ¹H NMR (600 MHz, CDCl₃) δ (ppm) δ = 7.78 (2) H, d, J = 8.2 Hz), 7.66 (2 H, d, J = 8.2 Hz), 4.97 – 4.91 (1 H, m), 3.45 (1 H, dd, J =16.3 Hz, 10.2 Hz), 2.95 (1 H, dd, J = 16.3 Hz, 8.1 Hz), 1.46 (3 H, d, J = 6.3 Hz). ¹³C

NMR (100 MHz, CDCl₃) δ (ppm) δ = 155.34, 133.36, 131.98, 131.65, 131.32, 130.99, 126.75, 125.58, 125.17, 122.47, 78.15, 41.14, 20.87. M.P.: 57 – 58 °C. HRMS (EI): $m/z [M + H]^+$ calcd for $C_{11}H_{10}F_3NO$: 230.0787; found: 230.0777.

Product 4d

Yield of 4d : 73% as a white solid. ¹H NMR (400 MHz, CDCl₃) δ (ppm) δ = 7.53 (4 H, s), 4.93 – 4.87 (1 H, m), 3.41 (1 H, dd, J = 16.3 Hz, 10.2 Hz), 2.90 (1 H, dd, J = 16.3 Hz, 8.1 Hz), 1.44 (3 H, d, J = 6.2 Hz). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) $\delta =$ 4d 155.54, 131.78, 128.75, 127.94, 124.02, 77.82, 41.23, 20.91. M.P.: 70 – 71 °C. HRMS (EI): m/z [M + H] ⁺ calcd for C₁₀H₁₀BrNO: 240.0019; found: 240.0013.

Product 4e

MeO

Yield of 4e : 63% as a white oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) δ = 7.31 (1 H, t, J = 8.0 Hz), 7.28 (1 H, s), 7.17 (1 H, d, J = 7.6 Hz), 6.95 (1 H, dd, J = 8.3 Hz, 2.5 Hz), 4.91 – 4.85 (1 H, m), 3.84 (3 H, s), 3.42 (1 H, dd, J = 16.3 Hz, 10.2 Hz), 2.92 (1 H, dd, J = 16.3 Hz, 8.0 Hz), 1.43 (3 H, d, J = 6.2 Hz). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) $\delta = 159.52$,

156.29, 131.01, 129.50, 119.11, 116.08, 111.03, 77.45, 55.19, 41.46, 20.84. HRMS (EI): m/z [M + H] ⁺ calcd for C₁₁H₁₃NO₂: 192.1019; found: 192.1027.

Product 4f

Yield of **4f** : 57% as a white oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) δ = 7.66 (2 H, dd, J = 8.8 Hz, 5.4 Hz), 7.10 (2 H, t, J = 8.7 Hz), 4.91 – 4.87 (1 H, m), 3.42 (1 H, dd, J16.3 Hz, 10.1 Hz), 2.92 (1 H, dd, J = 16.3 Hz, 8.0 Hz), 1.45 (3 H, d, J = 6.2 Hz). ¹³C

NMR (100 MHz, CDCl₃) δ (ppm) δ = 164.70, 162.22, 155.34, 128.37, 128.29, 126.04, 115.71, 115.50, 77.49, 41.45, 20.79. M.P.: 41 – 42 °C. HRMS (EI): m/z [M + H] ⁺ calcd for C₁₀H₁₀FNO: 180.0819; found: 180.0820.

Product 4g

Yield of **4g** : 92% as a white solid. ¹H NMR (600 MHz, CDCl₃) δ (ppm) δ = 7.63 (2 H, dd, J = 7.3 Hz, 2.2 Hz), 7.40 – 7.35 (3 H, m), 4.24 – 4.21 (1 H, m), 1.31 (6 H, s), 1.19 (3 H, s). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) δ = 165.08, 129.63, 129.48, 128.46, 127.15, 86.68,

50.69, 23.68, 19.20, 12.44. M.P.: 51 – 52 °C. HRMS (EI): m/z $[M + Na]^+$ calcd for $C_{12}H_{15}NO$: 212.1046; found: 212.1048.

Product 4h

Yield of **4h** : 94% as a white oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) δ = 7.61 (2 H, d, J = 6.8 Hz), 7.26 (2 H, d, J = 7.3 Hz), 4.29 – 4.28 (1 H, m), 2.43 (3 H, s), 1.38 (6 H, s), 1.26 (3 H, s). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) δ = 164.99, 139.57, 129.16, 127.02,

126.69, 86.53, 50.64, 23.69, 21.24, 19.19, 12.42. HRMS (EI): $m/z [M + Na]^+$ calcd for $C_{13}H_{17}NO$: 226.1202; found: 226.1205.

Product 4i

Yield of **4i** : 81% as a white solid. ¹H NMR (600 MHz, CDCl₃) δ (ppm) δ = 7.62 (2 H, d, *J* = 8.6 Hz), 7.39 (2 H, d, *J* = 8.5 Hz), 4.28 – 4.25 (1 H, m), 1.34 (6 H, s), 1.21 (3 H, s). ¹³C NMR (100 MHz, CDCl₃) δ (ppm) δ = 164.09, 135.54, 128.75, 128.38, 128.12,

86.90, 50.50, 23.64, 19.17, 12.39. M.P.: 63 – 64 °C. HRMS (EI): m/z $[M + Na]^+$ calcd for $C_{12}H_{14}CINO$: 246.0656; found: 246.0658.

Product 5a

Yield of **5a** : 52% as a yellow oil. ¹H NMR (600 MHz, CDCl₃) δ (ppm) δ = 7.72 (2 H, d, *J* = 8.0 Hz), 7.29 (d, *J* = 7.9 Hz, 2H), 4.14 (1 H, dd, *J* = 9.1 Hz, 3.4 Hz), 4.00 – 3.98 (1 H, m), 3.78 – 3.77 (1 H, m), 2.76 – 2.71 (1 H, m), 2.59 – 2.54 (1 H, m), 2.42 (3H, s), 1.52 – 1.44 (6 H, m), 1.18 – 1.14 (7 H, s), 1.08 – 1.06 (14 H, m). ¹³C NMR

 $(100 \text{ MHz}, \text{CDCl}_3) \delta = 171.11, 143.80, 131.67, 129.00, 128.54, 78.02, 59.46, 39.48, 36.01, 34.07, 32.90, 27.79, 21.43, 19.95, 16.91. HRMS (EI): m/z [M+H]⁺ calcd for C₂₄H₃₉N₃O₃S: 449.2712; found: 449.2701.$

Product 5b

Yield of **5b** : 46% as a white solid. ¹H NMR (400 MHz, CDCl₃) δ (ppm) δ = 7.70 – 7.57 (2 H, m), 7.36 - 7.30 (3 H, m), 4.43 (1 H, dd, J = 10.0 Hz, 4.4 Hz), 4.13 (1 H, 10.0 Hz)t, J = 9.9 Hz), 3.86 (1 H, dd, J = 9.7 Hz, 4.4 Hz), 3.02 (3 H, s), 1.51 (4 H, s), 1.40 -1.37 (8 H, m), 1.15 (6 H, s), 1.02 (6 H, d, J = 10.5 Hz). ¹³C NMR (100 MHz,

 $CDCl_3$) $\delta = 165.63, 130.42, 129.90, 128.38, 127.77, 75.15, 68.54, 59.70, 52.21, 39.66, 39.52, 36.19,$ 33.34, 32.51, 26.27, 20.22, 19.99, 16.98. M.P.: 148 - 150 °C. HRMS (EI): m/z [M+H]⁺ calcd for C₂₂H₃₅N₃O₃S: 422.2472; found: 422.2475

Product 5c

Yield of **6a** : 95% as a white soild. ¹H NMR (600 MHz, CDCl₃) δ (ppm) δ = 7.47 (2 H, d, J = 7.9 Hz), 7.09 (2 H, d, J = 7.9 Hz), 4.76 – 4.72 (1 H, m), 3.88 – 3.86 (2 H, m), 3.25 (1 H, dd, J = 16.3 Hz, 10.9 Hz), 3.12 (1 H, dd, J = 16.4 Hz, 7.4 Hz), 2.27 (3 H, s), 1.43 – 1.42 (1 H, m), 1.37 – 1.33 (4 H, m), 1.21 -1.17 (1 H, m), 1.11 (6 H, s), 0.97 (6 H, d, J = 4.3 Hz). ¹³C NMR (150 MHz, CDCl₃) $\delta = 155.82$, 139.80, 129.12, 126.65, 126.34, 78.74, 77.44, 59.85, 59.79, 39.38, 36.93, 32.87, 32.77, 21.23, 19.87, 16.80. M.P.: 54 - 55 °C. HRMS (EI): m/z $[M+Na]^+$ calcd for C₂₀H₃₀N₂O₂: 353.2199; found: 353.2221.

Product 5d

Yield of **6b** : 94% as a white soild. ¹H NMR (600 MHz, CDCl₃) δ (ppm) δ = 7.57 (2 H, d, J = 8.3 Hz), 7.37 (2 H, d, J = 8.4 Hz), 4.82 – 4.78 (1 H, m), 3.94 - 3.89 (2 H, m), 3.31 (1 H, dd, J = 16.4 Hz, 10.9 Hz), 3.19 (1 H, dd, J = 16.4 Hz, 7.5 Hz), 1.49 – 1.46 (1 H, m), 1.38 (4 H, s), 1.27 (10 H, s), 1.14 (6 H, s),

1.03 (6 H, s). ¹³C NMR (150 MHz, CDCl₃) δ = 155.72, 152.95, 126.64, 126.23, 125.37, 78.73, 77.32, 59.85, 59.80, 39.40, 36.95, 34.59, 32.85, 32.82, 30.97, 19.90, 16.81. M.P.: 114 - 115 °C. HRMS (EI): m/z $[M+Na]^+$ calcd for C₂₆H₃₆N₂O₂: 395.2669; found: 395.2689.

Product 5e

Yield of **6c** : 96% as a white solid. ¹H NMR (600 MHz, CDCl₃) δ (ppm) δ = 7.60 – 7.58 (2 H, m), 7.00 (2 H, t, *J* = 8.6 Hz), 4.81 – 4.76 (1 H, m), 3.89 (2 H, d, J = 4.7 Hz), 3.28 (1 H, dd, J = 16.3 Hz, 10.9 Hz), 3.15 (1 H, dd, J = 16.3 Hz, 7.4 Hz), 1.45 – 1.41 (1 H, m), 1.38 – 1.34 (4 H, m), 1.22 (1 H, d, J = 12.3 Hz), 1.10 (6 H, d, J = 6.1 Hz), 0.98 (6 H, d, J = 6.4 Hz). ¹³C NMR (150 MHz, CDCl₃) $\delta = 164.34$, 162.68, 155.08, 128.46, 128.41, 125.89, 125.87, 115.75, 115.61, 79.21, 77.47, 60.02, 59.94, 39.49, 36.95, 32.98, 32.85, 19.98, 16.90. M.P.: 80 - 81 °C. HRMS (EI): m/z [M+Na]⁺ calcd for C₁₉H₂₇FN₂O₂: 357.1949; found: 357.1966

4. Plausible reaction mechanism.^[6]

A possible reaction mechanism was proposed, as follows: Firstly, deprotonation of the hydrazone or oxime in the presence of DABCO to afford the anionic intermediate **A**. Then, a single-electron oxidation of **A** by PhI(OAc)₂ gives the *N*-centered radical or oxime **B**. Subsequently, a 5-exo-trig cyclization of **B** affords the *C*-centered radical **C**. There are two pathways for the following transformations of intermediate **C**. On the one hand, it can abstract a H atom from the reaction mixture (e.g., THF) to give the hydroamination or hydroxygenation products **E**. On the other hand, the intermediate **C** can be captured by TEMPO to afford the corresponding oxyamination or dioxygenation products **D**.

Reference: [6] K. C. Nicolaou, P. S. Baran, R. Kranich, Y.-L. Zhong, K. Sugita and N. Zou, *Angew. Chem. Int. Ed.*, 2001, 40, 202-206.

5. NMR and HRMS Spectra of Hydrazones, Oximes and the Cyclic Products ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of hydrazone 10

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (150 MHz, CDCl₃) spectrum of hydrazone 1p

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of oxime 3b

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of oxime 3c

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of oxime 3f

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (150 MHz, CDCl₃) spectrum of oxime 3h

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (150 MHz, CDCl₃) spectrum of oxime 3i

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of cyclic product 20

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (150 MHz, CDCl₃) spectrum of cyclic product 2p

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (150 MHz, CDCl₃) spectrum of cyclic product 2q

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of cyclic product 4a

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of cyclic product 4b

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of cyclic product 4c

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of cyclic product 4e

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of cyclic product 4f

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of cyclic product 4g

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of cyclic product 4h

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of cyclic product 4i

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of cyclic product 5a

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectrum of cyclic product 5b

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (150 MHz, CDCl₃) spectrum of cyclic product 6a

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (150 MHz, CDCl₃) spectrum of cyclic product 6c