Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Supporting information

Palladium-Catalyzed Oxidative C-H/C-H Cross-Coupling of 1-Substituted 1,2,3-Triazoles with Furans and Thiophenes

Xin Yu,^a ZhenDong Huang,^b Wei Liu,^a SuPing Shi,^a and ChungXiang Kuang*^{a, c}

^{*a*} Department of Chemistry, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China, E-mail: <u>kuangcx@tongji.edu.cn</u>

^b Zhejiang Citrus Research Institute, Taizhou 318020, China.

^c Key Laboratory of Yangtze River Water Environment, Ministry of Education, Siping Road 1239, Shanghai 200092, P. R. China

Table of Contents

General Experimental Details	S1
The synthesis of 1-substituted 1,2,3-triazoles	S1
Experimental details and characterization data for products	S3
The H/D Exchange Control Experiments	S9
Coupling of 1-benzyl-H-1,2,3-triazole and thiophene	S11
Reference	
NMR Spectra of compounds	S12

1. General Experimental

All commercially available reagents and solvent were obtained from the commercial providers and used without further purification. ¹H NMR spectra were obtained at 400 MHz and recorded relative to the tetramethylsilane signal (0 ppm) or residual protic-solvent. ¹³C NMR spectra were obtained at 101 MHz or 126MHz, and chemical shifts were record relative to the solvent resonance (CDCl₃, 77.0 ppm). Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s= singlet, d= doublet, t= triplet, q= quartet, m= multiplet or unresolved, br = broad singlet, coupling constant(s) in Hz, integration). Data for ¹³C NMR are reported in terms of chemical shift (δ , ppm). MS data were measured with a Varian-310 mass spectrometer. High resolution mass spectra were determined using a Finnigan-NAT GC/MS/DS 8430 spectrometer.IR spectra were obtained on a Nexus FT-IR spectrophotometer.

2.

The synthesis of 1-substituted-1, 2, 3-triazoles 1-Substituted-1,2,3-Triazoles were

prepared according to known procedures (Scheme 1).¹

4,5-dimethylthiazole (2g)

pyrrole 1 (2h)

1-methyl-pyrrole (2i)

indole

(2j)

1-methyl-indole (2k)

2

3.

General Procedure for Coupling of 1-benzyl-1,2,3-triazoles and thiophens or funans

Funans(Thiophens) **2** (115.4 mg, 1.2 mmol, 3 equiv) was added to an oven-dried, sealed tube charged with 1-substituted 1,2,3-triazoles **1** (69.2 mg, 0.4 mmol, 1 equiv), $Pd(OAc)_2$ (9 mg, 0.04 mmol, 10 mol%), Ag_2CO_3 (100 mg, 0.6 mmol, 1.5 equiv) and pyridine (0.1 mL, 1.2 mmol, 3 equiv) in toluene (2 mL). The reaction mixture was stirred at 90 °C for 18 h. After reaction was completed (as monitored by TLC), the mixture was cooled to room temperature. The solvent was then evaporated in vacuum. The resulting residue was purified by columnchromatography (silica gel, eluent: Petroleum ether/EtOAc=3:1) to afford product **3**.

Spectroscopic and Analytical Data of compound

5-(5-ethylfuran-2-yl)-1-(2-methylbenzyl)-1H-1,2,3-triazole (3a, 70%), Brown Oil:

¹H NMR (400 MHz, CDCl₃) δ 7.91 (s, 1H), 7.21 (d, J = 6.7 Hz, 2H), 7.09 (t, J = 7.0 Hz, 1H), 6.62 (d, J = 7.7 Hz, 1H), 6.30 (d, J = 3.3 Hz, 1H), 6.05 (d, J = 3.2 Hz, 1H), 5.75 (s, 2H), 2.67 (q, J = 7.5 Hz, 2H), 2.41 (s, 3H), 1.22 (t, J = 7.6 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 159.45 (s), 139.42 (s), 134.92 (s), 133.53 (s), 131.77 (s), 130.38 (s), 129.74 (s), 127.91 (s), 126.44 (s), 126.36 (s), 110.98 (s), 106.29 (s), 50.63 (s), 21.33 (s), 19.12 (s), 11.91 (s). HRMS (ESI-TOF) m/z Calcd for $C_{16}H_{17}N_3O$ (M⁺): 267.1372; found: 267.1366

 $IR:_{max}(thin film) (cm^{-1}) = 2974, 1715, 1684, 1495, 1024, 742.$

1-(2-methylbenzyl)-5-(5-methylfuran-2-yl)-1H-1,2,3-triazole (3b, 65%), Brown oil:

¹H NMR (400 MHz, CDCl₃) δ 7.91 (s, 1H), 7.21 (d, J = 6.2 Hz, 2H), 7.10 (t, J = 7.0 Hz, 1H), 6.64 (d, J = 7.7 Hz, 1H), 6.27 (d, J = 3.2 Hz, 1H), 6.04 (d, J = 2.4 Hz, 1H), 5.75 (s, 2H), 2.41 (s, 3H), 2.33 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 153.82 (s), 139.54 (s), 134.99 (s), 133.48 (s), 131.80 (s), 130.40 (s), 129.65 (s), 127.95 (s), 126.46 (s), 111.15 (s), 107.84 (s), 50.59 (s), 19.14 (s), 13.50 (s).

HRMS (ESI-TOF) m/z Calcd for C₁₅H₁₅N₃O (M⁺): 253.1215; found: 253.1207

 $IR:_{max}(thin film) (cm^{-1}) = 2921, 2851, 1646, 1582, 1450, 744, 977.$

1-(2-methylbenzyl)-5-(5-methylthiophen-2-yl)-1H-1,2,3-triazole (3c, 56%), Yellow solid: ¹H NMR (400 MHz, CDCl₃) δ 7.82 (s, 1H), 7.23 (d, *J* = 4.0 Hz, 2H), 7.12 (dt, *J* = 8.5, 4.3 Hz, 1H), 6.77 (d, *J* = 3.6 Hz, 1H), 6.72 (dd, *J* = 3.5, 1.0 Hz, 1H), 6.60 (d, *J* = 7.7 Hz, 1H), 5.64 (s, 2H), 2.50 (s, 3H), 2.35 (s, 3H). mp. 101.7 °C-102.3 °C

¹³C NMR (101 MHz, CDCl₃) δ 143.00 (s), 134.88 (s), 133.74 (s), 133.35 (s), 132.40 (s), 130.45 (s), 128.21 (s), 128.01 (s), 126.53 (s), 126.33 (s), 126.22 (s), 124.11 (s), 49.86 (s), 19.16 (s), 15.23 (s).

HRMS (ESI-TOF) m/z Calcd for C₁₅N₁₅N₃S (M⁺): 269.0987; found: 269.0981

IR:_{max}(thin film) (cm⁻¹) =3015, 2966, 1658, 1513, 1430, 951.

1-(4-methylbenzyl)-5-(5-methylfuran-2-yl)-1H-1,2,3-triazole (3d, 60%), Brown oil:

¹H NMR (400 MHz, CDCl₃) δ 7.86 (s, 1H), 7.13 (d, *J* = 8.0 Hz, 2H), 7.08 (d, *J* = 8.0 Hz, 2H), 6.42 (d, *J* = 3.2 Hz, 1H), 6.07 (d, *J* = 3.1 Hz, 1H), 5.73 (s, 2H), 2.71 (q, *J* = 7.5 Hz, 2H), 2.32 (s, 3H), 1.27 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.38 (s), 139.51 (s), 137.87 (s), 132.28 (s), 131.70 (s), 129.45 (s), 128.14 (s), 127.02 (s), 111.05 (s), 106.28 (s), 52.55 (s), 21.38 (s), 21.06 (s), 12.04 (s).

HRMS (ESI-TOF) m/z Calcd for $C_{16}H_{17}N_3O$ (M⁺): 267.1372; found: 267.1369

 $IR:_{max}(thin film) (cm^{-1}) = 2358, 1665, 1580, 1409, 713.$

5-(benzothiophen-2-yl)-1-(4-methylbenzyl)-1H-1,2,3-triazole (3e, 59%), Brown solid:

¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 1H), 7.89 – 7.83 (m, 1H), 7.79 (dd, J = 6.3, 2.9 Hz, 1H), 7.42 (dd, J = 5.9, 3.2 Hz, 3H), 7.15 (d, J = 7.9 Hz, 2H), 7.08 (d, J = 7.9 Hz, 2H), 5.73 (s, 2H), 2.35 (s, 3H). mp. 104.4-105.8 ^oC

¹³C NMR (126 MHz, CDCl₃) δ 140.24 (s), 139.38 (s), 138.13 (s), 134.34 (s), 132.16 (s), 129.61 (s), 126.98 (s), 125.52 (s), 125.15 (s), 125.02 (s), 124.17 (s), 123.72 (s), 122.19 (s), 121.41 (s), 52.09 (s), 21.10 (s). HRMS (ESI-TOF) m/z Calcd for $C_{18}H_{15}N_3S$ (M⁺): 305.0987; found: 305.0979

 $IR:_{max}(thin film) (cm^{-1}) = 3182, 2998, 1764, 1642, 1598.$

1-(3-methylbenzyl)-5-(5-methylthiophen-2-yl)-1H-1,2,3-triazole (3f, 63%), Yellow oil:

¹H NMR (400 MHz, CDCl₃) δ 7.78 (s, 1H), 7.22 (t, *J* = 7.6 Hz, 1H), 7.12 (d, *J* = 7.6 Hz, 1H), 6.98 – 6.89 (m, 2H), 6.84 (d, *J* = 3.5 Hz, 1H), 6.75 (d, *J* = 2.8 Hz, 1H), 5.63 (s, 2H), 2.52 (s, 3H), 2.32 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 142.91 (s), 138.67 (s), 135.31 (s), 133.47 (s), 128.88 (s), 128.72 (s), 128.45 (s), 127.58 (s), 126.15 (s), 124.17 (s), 123.97 (s), 51.86 (s), 21.35 (s), 15.20 (s).

HRMS (ESI-TOF) m/z Calcd for $C_{15}H_{15}N_3S$ (M⁺):269.0987; found: 269.0972.

 $IR:_{max}(thin film) (cm^{-1}) = 3119, 3005, 2361, 1631, 1471, 1335, 789.$

5-(benzofuran-2-yl)-1-(3-methylbenzyl)-1H-1,2,3-triazole (3g, 60%), Yellow oil:

¹H NMR (400 MHz, CDCl₃) δ 8.09 (s, 1H), 7.60 (d, *J* = 7.8 Hz, 1H), 7.56 (d, *J* = 8.3 Hz, 1H), 7.39 (t, *J* = 7.5 Hz, 1H), 7.31 (d, *J* = 7.5 Hz, 1H), 7.22 (t, *J* = 7.8 Hz, 1H), 7.10 (d, *J* = 7.5 Hz, 1H), 7.04 (d, *J* = 7.3 Hz, 2H), 6.89 (s, 1H), 5.88 (s, 2H), 2.29 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 154.85 (s), 143.12 (s), 138.74 (s), 134.89 (s), 133.58 (s), 129.07 (s), 128.78 (s), 127.83 (s), 125.71 (s), 124.18 (s), 123.65 (s), 121.55 (s), 111.35 (s), 106.53 (s), 53.19 (s), 21.34 (s). HRMS (ESI-TOF) m/z Calcd for $C_{18}H_{15}N_3O$ (M⁺): 289.1215; found: 289.1215; found: 289.1212 IR:_{max}(thin film) (cm⁻¹) =3012, 2501, 1789, 1560, 1485, 997, 765.

1-(3-methylbenzyl)-5-(5-methylfuran-2-yl)-1H-1,2,3-triazole (3h, 65%), Brown oil:

¹H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.22 (t, *J* = 7.5 Hz, 1H), 7.11 (d, *J* = 7.5 Hz, 1H), 6.99 (d, *J* = 9.6 Hz, 2H), 6.39 (d, *J* = 3.2 Hz, 1H), 6.07 (d, *J* = 2.6 Hz, 1H), 5.73 (s, 2H), 2.37 (s, 3H), 2.32 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 153.74 (s), 139.62 (s), 138.58 (s), 135.18 (s), 131.72 (s), 129.31 (s), 128.86 (s), 128.65 (s), 127.77 (s), 124.14 (s), 111.23 (s), 107.83 (s), 52.72 (s), 21.34 (s), 13.56 (s). HRMS (ESI-TOF) m/z Calcd for C₁₅H₁₅N₃O (M⁺): 253.1215; found: 253.1208 IR:_{max}(thin film) (cm⁻¹) =2980, 2633, 1675, 1540, 1486, 1028, 798.

5-(5-ethylfuran-2-yl)-1-(4-methoxybenzyl)-1H-1,2,3-triazole (4a, 79%), Yellow oil:

¹H NMR (400 MHz, CDCl₃) δ 7.84 (s, 1H), 7.15 (d, *J* = 8.6 Hz, 2H), 6.85 (d, *J* = 8.6 Hz, 2H), 6.44 (d, *J* = 3.3 Hz, 1H), 6.09 (d, *J* = 3.2 Hz, 1H), 5.71 (s, 2H), 3.79 (s, 3H), 2.73 (q, *J* = 7.5 Hz, 2H), 1.28 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.43 (s), 159.39 (s), 139.53 (s), 131.81 (s), 129.78 (s), 128.56 (s), 127.37 (s), 114.17 (s), 111.09 (s), 106.30 (s), 55.25 (s), 52.30 (s), 21.41 (s), 12.07 (s).

HRMS (ESI-TOF) m/z Calcd for $C_{16}H_{17}N_3O_2(M^+)$: 283.1321; found: 283.1316

IR:_{max}(thin film) (cm⁻¹) =3021, 2918, 2848, 1658, 1547, 1467, 1024, 712.

1-(4-methoxybenzyl)-5-(5-methylthiophen-2-yl)-1H-1,2,3-triazole (4b, 67%), Yellow oil: ¹H NMR (400 MHz, CDCl₃) δ 7.75 (s, 1H), 7.09 (d, *J* = 8.6 Hz, 2H), 6.86 (dd, *J* = 6.3, 2.3 Hz, 3H), 6.77 – 6.74 (m, 1H), 5.59 (s, 2H), 3.80 (s, 3H), 2.53 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 159.47 (s), 142.92 (s), 133.53 (s), 131.89 (s), 128.51 (s), 128.48 (s), 127.42 (s), 126.13 (s), 124.17 (s), 114.23 (s), 55.27 (s), 51.45 (s), 15.22 (s).

HRMS (ESI-TOF) m/z Calcd for $C_{15}H_{15}N_3OS$ (M⁺): 285.0936; found: 285.0930 IR:_{max}(thin film) (cm⁻¹) =2979, 2847, 1701, 1532, 1310, 978.

1-(4-methoxybenzyl)-5-(5-methylfuran-2-yl)-1H-1,2,3-triazole (4c, 76%), Brown oil:

¹H NMR (400 MHz, CDCl₃) δ 7.84 (s, 1H), 7.15 (d, *J* = 8.5 Hz, 2H), 6.85 (d, *J* = 8.6 Hz, 2H), 6.41 (d, *J* = 3.2 Hz, 1H), 6.08 (d, *J* = 2.9 Hz, 1H), 5.70 (s, 2H), 3.79 (s, 3H), 2.39 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 159.44 (s), 153.73 (s), 139.65 (s), 131.78 (s), 129.79 (s), 128.60 (s), 127.34 (s), 114.16 (s), 111.24 (s), 107.83 (s), 55.25 (s), 52.28 (s), 13.59 (s).

HRMS (ESI-TOF) m/z Calcd for C₁₅H₁₅N₃O₂ (M⁺): 269.1164; found: 269.1156

IR:_{max}(thin film) (cm⁻¹) =3024, 2878, 1726, 1691, 1564, 1153, 1076, 937.

5-(benzofuran-2-yl)-1-(4-methoxybenzyl)-1H-1,2,3-triazole (4d, 71%), Yellow solid:

¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.61 (d, J = 7.7 Hz, 1H), 7.57 (d, J = 8.2 Hz, 1H), 7.40 (dd, J = 11.3, 4.1 Hz, 1H), 7.34 – 7.28 (m, 1H), 7.21 (d, J = 8.7 Hz, 2H), 6.91 (s, 1H), 6.84 (d, J = 8.7 Hz, 2H), 5.86 (s, 2H), 3.77 (s, 3H). mp. 100.7-101.5 °C

¹³C NMR (126 MHz, CDCl₃) δ 159.58 (s), 154.88 (s), 143.19 (s), 133.63 (s), 129.82 (s), 128.71 (s), 127.82 (s), 127.06 (s), 125.69 (s), 123.68 (s), 121.55 (s), 114.29 (s), 111.35 (s), 106.54 (s), 55.25 (s), 52.77 (s). HRMS (ESI-TOF) m/z Calcd for $C_{18}H_{15}N_3O_2$ (M⁺): 305.1164; found: 305.1161

IR:_{max}(thin film) (cm⁻¹) =3118, 3030, 1764, 1692, 1582, 1547, 1141, 975.

5-(benzo[b]thiophen-2-yl)-1-(4-methoxybenzyl)-1H-1,2,3-triazole (4e, 70%), Yellow oil: ¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.90 – 7.84 (m, 1H), 7.83 – 7.75 (m, 1H), 7.46 – 7.38 (m, 2H), 7.29 (d, *J* = 3.1 Hz, 1H), 7.13 (d, *J* = 8.5 Hz, 2H), 6.86 (d, *J* = 8.6 Hz, 2H), 5.70 (s, 2H), 3.80 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 159.57 (s), 140.27 (s), 139.35 (s), 128.54 (s), 127.12 (s), 126.92 (s), 125.53 (s), 125.27 (s), 125.02 (s), 124.17 (s), 122.19 (s), 114.30 (s), 55.26 (s), 51.96 (s).

HRMS (ESI-TOF) m/z Calcd for $C_{18}H_{15}N_3OS$ (M⁺): 321.0936; found: 321.0922.

IR:_{max}(thin film) (cm⁻¹) =3021, 2877, 2250, 1658, 1632, 1549, 1484, 1021, 949.

1-benzyl-5-(5-ethylfuran-2-yl)-1H-1,2,3-triazole (5a, 73%), Brown oil: ¹H NMR (400 MHz, CDCl₃) δ 7.86 (s, 1H), 7.36 – 7.29 (m, 3H), 7.18 (d, *J* = 6.7 Hz, 2H), 6.41 (d, *J* = 3.3 Hz, 1H), 6.07 (d, J = 3.3 Hz, 1H), 5.78 (s, 2H), 2.70 (q, J = 7.6 Hz, 2H), 1.26 (t, J = 7.6 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 159.44 (s), 139.43 (s), 135.32 (s), 131.71 (s), 129.41 (s), 128.79 (s), 128.08 (s), 126.99 (s), 111.09 (s), 106.30 (s), 52.75 (s), 21.37 (s), 12.02 (s). HRMS (ESI-TOF) m/z Calcd for C₁₅H₁₅N₃O (M⁺): 253.1215; found: 253.1200 IR:_{max}(thin film) (cm⁻¹) =3007, 2918, 2848, 1631, 1469, 1137, 717.

5-(benzo[b]thiophen-2-yl)-1-benzyl-1H-1,2,3-triazole (5b, 66%), Yellow solid:

¹H NMR (400 MHz, CDCl₃) δ 7.93 (s, 1H), 7.88 – 7.83 (m, 1H), 7.78 (dd, J = 6.4, 2.7 Hz, 1H), 7.42 (dd, J = 6.0, 3.2 Hz, 2H), 7.34 (d, J = 6.6 Hz, 3H), 7.28 (d, J = 6.3 Hz, 1H), 7.20 – 7.14 (m, 2H), 5.77 (s, 2H). mp. 100.9-101.6 °C

¹³C NMR (126 MHz, CDCl₃) δ 140.24 (s), 139.35 (s), 135.18 (s), 134.39 (s), 128.95 (s), 128.30 (s), 126.98 (s), 125.55 (s), 125.19 (s), 125.04 (s), 124.18 (s), 122.19 (s), 52.25 (s).

HRMS (ESI-TOF) m/z Calcd for C₁₇H₁₃N₃S (M⁺): 291.0830; found: 291.0825

 $IR:_{max}(thin film) (cm^{-1}) = 3019, 2811, 1658, 1630, 1502, 1443, 990.$

1-benzyl-5-(5-methylthiophen-2-yl)-1H-1,2,3-triazole (5c, 58%), Yellow solid:

¹H NMR (400 MHz, CDCl₃) δ 7.78 (s, 1H), 7.34 (d, *J* = 7.4 Hz, 3H), 7.14 (d, *J* = 7.8 Hz, 2H), 6.83 (d, *J* = 3.5 Hz, 1H), 6.74 (d, *J* = 3.5 Hz, 1H), 5.67 (s, 2H), 2.52 (s, 3H). mp. 108.9-109.5 °C

¹³C NMR (126 MHz, CDCl₃) δ 142.96 (s), 135.40 (s), 133.50 (s), 128.87 (s), 128.46 (s), 128.13 (s), 126.93 (s), 126.16 (s), 124.08 (s), 51.88 (s), 15.21 (s).

HRMS (ESI-TOF) m/z Calcd for $C_{14}H_{13}N_3S$ (M⁺): 255.0830; found: 255.0824.

 $IR:_{max}(thin film) (cm^{-1}) = 3010, 1764, 1691, 1482, 1468, 1385, 975.$

5-(benzofuran-2-yl)-1-(4-fluorobenzyl)-1H-1,2,3-triazole (6a, 55%), Yellow solid:

¹H NMR (400 MHz, CDCl₃) δ 8.07 (s, 1H), 7.61 (d, *J* = 7.6 Hz, 1H), 7.56 (d, *J* = 8.3 Hz, 1H), 7.40 (t, *J* = 7.2 Hz, 1H), 7.32 (d, *J* = 7.7 Hz, 1H), 7.27 – 7.23 (m, 2H), 7.01 (t, *J* = 8.6 Hz, 2H), 6.92 (s, 1H), 5.89 (s, 2H). mp. 101.3-102.5 °C

¹³C NMR (126 MHz, CDCl₃) δ 162.58 (d, J = 247.5 Hz), 154.88 (s), 142.94 (s), 133.65 (s), 130.83 (d, J = 2.7 Hz), 129.15 (d, J = 8.2 Hz), 127.70 (s), 125.80 (s), 123.77 (s), 121.59 (s), 115.87 (d, J = 21.8 Hz), 114.47 (s), 111.30 (s), 106.66 (s), 52.54 (s).

HRMS (ESI-TOF) m/z Calcd for $C_{17}H_{12}FN_3O$ (M⁺): 293.0964; found: 293.0959 IR:_{max}(thin film) (cm⁻¹) =2880, 2792, 1819, 1744, 1428, 803.

1-(4-fluorobenzyl)-5-(5-methylfuran-2-yl)-1H-1,2,3-triazole (6b, 60%), Brown oil:

¹H NMR (400 MHz, CDCl₃) δ 7.85 (s, 1H), 7.24 – 7.15 (m, 2H), 7.02 (t, *J* = 8.6 Hz, 2H), 6.42 (d, *J* = 3.2 Hz, 1H), 6.09 (d, *J* = 2.4 Hz, 1H), 5.75 (s, 2H), 2.38 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 162.51 (d, J = 247.1 Hz), 153.88 (s), 139.45 (s), 131.82 (s), 131.09 (d, J = 2.7 Hz), 130.28 (s), 129.03 (d, J = 8.2 Hz), 115.75 (d, J = 21.7 Hz), 111.36 (s), 107.89 (s), 52.10 (s), 13.58 (s). HRMS (ESI-TOF) m/z Calcd for C₁₄H₁₂FN₃O (M⁺): 257.0964; found: 257.0960 IR:_{max}(thin film) (cm⁻¹) =2918, 2848, 1735, 1631, 1597, 1021.

1-(4-fluorobenzyl)-5-(5-methylthiophen-2-yl)-1H-1,2,3-triazole (6c, 49%), Yellow oil:

¹H NMR (400 MHz, CDCl₃) δ 7.77 (s, 1H), 7.16 – 7.09 (m, 2H), 7.02 (t, *J* = 8.6 Hz, 2H), 6.84 (d, *J* = 3.5 Hz, 1H), 6.76 (d, *J* = 2.6 Hz, 1H), 5.63 (s, 2H), 2.53 (s, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 162.53 (d, J = 247.2 Hz), 143.14 (s), 133.64 (s), 132.01 (s), 131.10 (d, J = 2.6 Hz), 128.92 (d, J = 8.2 Hz), 128.57 (s), 126.17 (s), 123.89 (s), 115.83 (d, J = 21.8 Hz), 51.23 (s), 15.22 (s). HRMS (ESI-TOF) m/z Calcd for C₁₄H₁₂FN₃S (M⁺): 273.0736; found: 273.0729 IR:_{max}(thin film) (cm⁻¹) =3009, 2361, 1658, 1644, 1581, 1432, 1214, 1122, 990.

5-(5-methylfuran-2-yl)-1-phenethyl-1H-1,2,3-triazole (3ab, 51%), Yellow oil:

¹H NMR (400 MHz, CDCl₃) δ 7.80 (s, 1H), 7.34 – 7.29 (m, 2H), 7.27 (d, *J* = 7.1 Hz, 1H), 7.22 – 7.15 (m, 2H), 6.47 (d, *J* = 3.3 Hz, 1H), 6.18 – 6.08 (m, 1H), 4.84 – 4.66 (m, 2H), 3.31 – 3.14 (m, 2H), 2.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 153.80 (s), 139.74 (s), 137.20 (s), 128.74 (s), 128.71 (s), 126.97 (s), 111.04 (s), 107.86 (s), 50.62 (s), 36.60 (s), 13.68 (s).

HRMS (ESI-TOF) m/z Calcd for $C_{15}H_{15}N_3O$ (M⁺): 253.1215; found: 253.1204.

IR:_{max}(thin film) (cm⁻¹) =3119, 3020, 2880, 1659, 1573, 1484, 1441, 1110, 1052, 998.

5-(benzofuran-2-yl)-1-phenethyl-1H-1,2,3-triazole (3ac, 49%), Pink solid:

¹H NMR (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.69 – 7.61 (m, 1H), 7.58 (d, J = 8.2 Hz, 1H), 7.42 (t, J = 7.7 Hz, 1H), 7.37 – 7.30 (m, 2H), 7.27 – 7.23 (m, 2H), 7.19 (d, J = 6.8 Hz, 2H), 6.92 (s, 1H), 4.98 – 4.87 (m, 2H), 3.34 – 3.24 (m, 2H). mp. 99.2-99.8 °C

¹³C NMR (101 MHz, CDCl₃) δ 154.95 (s), 143.22 (s), 137.00 (s), 133.31 (s), 128.75 (s), 127.80 (s), 127.04 (s),

125.70 (s), 123.75 (s), 121.54 (s), 111.36 (s), 106.43 (s), 51.11 (s), 36.74 (s). HRMS (ESI-TOF) m/z Calcd for $C_{18}H_{15}N_3O$ (M⁺): 289.1215; found: 289.1206. IR:_{max}(thin film) (cm⁻¹) =3195, 2847, 1764, 1646, 1631, 1469, 1422, 1029.

5-(5-methylfuran-2-yl)-1-phenyl-1H-1,2,3-triazole (3ad, 43%), Brown oil:

¹H NMR (400 MHz, CDCl₃) δ 7.96 (s, 1H), 7.86 (d, *J* = 8.5 Hz, 2H), 7.68 (d, *J* = 8.5 Hz, 3H), 6.22 (d, *J* = 3.2 Hz, 1H), 6.07 (d, *J* = 2.5 Hz, 1H), 2.31 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 154.64 (s), 140.15 (s), 138.55 (s), 133.27 (s), 132.24 (s), 126.02 (s), 117.64 (s), 113.64 (s), 112.35 (s), 107.96 (s), 13.54 (s).

HRMS (ESI-TOF) m/z Calcd for C₁₃H₁₁N₃O (M⁺): 225.0902; found: 225.0898

IR:_{max}(thin film) (cm⁻¹) =3123, 2918, 1785, 1680, 1549, 1436, 1256. 1120, 993.

4,4',5,5'-tetramethyl-2,2'-bithiazole (3eg, 95%), Yellow oil:

 ^1H NMR (400 MHz, CDCl_3) δ 2.43 (s, 6H), 2.40 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 157.11 (s), 149.56 (s), 128.20 (s), 14.85 (s), 11.66 (s).

The spectral data obtained were in accordance with those described in the literature.⁴

4.

The H/D Exchange Control Experiments³

A mixture of 1-benzyl-1,2,3-triazole(1e) (0.4 mmol), $Pd(OAc)_2$ (0.04 mmol), Ag_2CO_3 (0.6 mmol) and D_2O (0.1 mL) in toluene (2 mL) as stirred at 100 °C for 18 h in sealed tube. After cooling, the reaction solution concentrated under vacuum to yield the crude product. The ratio of 1ee-H and 1ee-D was determined by ¹H NMR analysis of the crude product and found that the ratio of 1ee-H and 1ee-D was 1:7. The same operation of 2e. The ratio of 2ee-H and 2ee-D was 3:1.

5. Coupling of 1-benzyl-H-1,2,3-triazole and thiophene

NMR Spectra of the 1-benzyl-H-1,2,3-triazole and thiophene coupling product.

we guessed that the products was mixture and later the data of GC-MS was affirmed this suspect

$$\begin{split} HRMS(ESI-TOF) \ m/z \ Calcd \ for \ C_{13}H_{11}N_3S \ (M^+): 241.0674; \ found: \ 241.0647. \\ HRMS(ESI-TOF) \ m/z \ Calcd \ for \ C_{17}H_{13}N_3S_2 \ (M^+): 323.0551 \ found: \ 323.0519. \end{split}$$

6.

Reference:

- [1] M. Taillefer, N. Xia, A. Ouali, Angew. Chem. Int. Ed., 2007, 46, 934.
- [2] J. Doiron, Al H. Soultan and M. Touaibia, Eur. J. Med. Chem., 2011, 46, 4010.
- [3] W. Liu, X. Yu and C. X. Kuang, Chem. Commun., 2014, 50, 9291.
- [4] M. W. Zhu, K. Fujita and R. Yamaguchi, Chem. Commun., 2011, 47, 12876.

7. NMR Spectra of compounds ¹H NMR of 3a

¹H NMR of 3c

100 90 f1 (ppm)

-1000 --0 ---1000

¹H NMR of 3eg

