Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Supplementary Information

Isostructural Re(I)/^{99m}Tc(I) Tricarbonyl Complexes Functionalized

with Benzothiazole Derivatives for Cancer Theranostics

Patrique Nunes,¹ Goreti Ribeiro Morais,¹ Elisa Palma,¹ Francisco Silva,¹ Maria Cristina Oliveira,¹ Vera F. C. Ferreira,¹ Filipa Mendes,¹ Lurdes Gano,¹ Hugo Vicente Miranda,² Tiago F. Outeiro,^{2,3,4} Isabel Santos,¹ António Paulo^{1*}

¹Centro de Ciências e Tecnologias e Nucleares, IST, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal

²Cell and Molecular Neuroscience Unit, Instituto de Medicina Molecular, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal;

³Instituto de Fisiologia, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal

⁴Department of NeuroDegeneration and Restorative Research, University Medical Center Göttingen, Waldweg 33, 37073 Göttingen, Germany

NMR data

Figure S1. (A) ¹H and (B) ¹³C spectrum of (3) in $CDCl_3$ (S) showing the integration of aromatic and aliphatic protons. Peak from residual water is also assigned.

Figure S2. (A) ¹H and (B) ¹³C spectrum of (4) in $CDCl_3$ (S) showing the integration of aromatic and aliphatic protons.

Figure S3. (A) ¹H and (B) ¹³C spectrum of (5) in $CDCl_3$ (S) showing the integration of aromatic and aliphatic protons.

Figure S4. (A) ¹H and (B) ¹³C spectrum of (6) in $CDCl_3$ (S) showing the integration of aromatic and aliphatic protons.

Figure S5. (A) ¹H and (B) ¹³C spectrum of (7) in $CDCl_3$ (S) showing the integration of aromatic and aliphatic protons.

Figure S6. (A) ¹H and (B) ¹³C spectrum of (8) in $CDCl_3$ (S) showing the integration of aromatic and aliphatic protons.

Figure S7. (A) ¹H and (B) ¹³C spectrum of (9) in $CDCl_3$ (S) showing the integration of aromatic and aliphatic protons.

Figure S8. (A) ¹H and (B) ¹³C spectrum of (10) in $CDCl_3$ (S) showing the integration of aromatic and aliphatic protons. Peak from residual water is also assigned.

Figure S9. (A) ¹H and (B) ¹³C spectrum of (11) in $CDCl_3$ (S) showing the integration of aromatic and aliphatic protons.

Figure S10. (A) ¹H and (B) ¹³C spectrum of (12) in $CDCl_3$ (S) showing the integration of aromatic and aliphatic protons. Peaks from residual THF (*) are also assigned.

Figure S11. (A) ¹H and (B) ¹³C spectrum of (13) in CD_3OD (S) showing the integration of aromatic and aliphatic protons. Peak from residual water is also assigned.

Figure S12. (A) ¹H and (B) ¹³C spectrum of (14) in $CDCl_3$ (S) showing the integration of aromatic and aliphatic protons.

Figure S13. (A) ¹H and (B) ¹³C spectrum of (15) in $CDCl_3$ (S) showing the integration of aromatic and aliphatic protons.

aromatic and aliphatic protons.

Figure S15. (A) ¹H and (B) ¹³C spectrum of $2-[(2-((2^{-}-(benzo[d]thiazol-2-yl)phenyl)(methyl)amino)ethyl)thio]ethyl)amino) acetic acid (L1) in DMSO-$ *d6*(S) showing the integration of aromatic and aliphatic protons.

Figure S16. (A) ¹H and (B) ¹³C spectrum of 2-[2`-((4```-(6````-methylbenzo[*d*]thiazol-2yl)phenyl)(methyl)amino)ethylthio)ethylamino] acetic acid (L2) in CD₃OD (S). Peak from residual water is also assigned.

Figure S17. (A) ¹H and (B) ¹³C spectrum of [4-(benzo[*d*]thiazol-2-yl)phenyl]–5–oxa–10–thia-2,13–diazapentadecan–15-oic acid (L3) in CD₃OD (S). Peak from residual water is also assigned.

Figure S18. (**A**) ¹H and (**B**) ¹³C spectrum of 2-[4`-((6``-methyl)benzo[*d*]thiazol-2-yl)phenyl]-5- oxa-10-thia-2,13-diazapentadecan-15-oic acid (**L4**) in CD₃OD (S). Peak from residual water is also assigned.

Figure S19. (A) ¹H and (B) ¹³C spectrum of **Re1** in DMF- d_7 (S) and 20 °C.

Figure S20. (A) ¹H and (B) DEPT spectrum of **Re2** in DMF- d_7 (S) and 20 °C. Peak from residual water is also assigned.

Figure S21. (A) ¹H and (B) DEPT spectrum of **Re3** in DMF-d7 (S) and 20 °C. Peak from residual water is also assigned.

Figure S22. (A) ¹H and (B) DEPT spectrum of **Re4** in DMF- d_7 (S) and 20 °C. Peak from residual water is also assigned.