Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

## Copper(II)- Catalyzed Electrophilic Amination of Quinoline

# N-Oxides with O-Benzoyl hydroxylamines

Gang Lia\*, Chunqi Jiab, Kai Suna, Yunhe Lva, Feng Zhaoa, Kexiao Zhoua, and Hankui Wua\*

- <sup>a</sup> College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000 P. R. China Fax: (+86)-372-2900040; E-mail: ligang@aynu.edu.cn; hkwu@aynu.edu.cn
- <sup>b</sup> School of Biomedical Sciences, Engineering Research Center of Molecular Medicine of Chinese Education Ministry, Xiamen Key Laboratory of Ocean and Gene Drugs, Institute of Molecular Medicine of Huaqiao University, Xiamen, 361021 P. R. China

#### **Table of contents**

- 1. General Information
- 2. Experimental Section
- 2.1. General Procedure to Prepare Quinoline *N*-Oxide Derivatives
- 2.2. General Procedure to Prepare O-Benzoyl hydroxylamine
- 2.3. Typical Experimental Procedures of the Electrophilic Amination
- 3. Kinetic Isotope Effect Studies in the Electrophilic Amination
- 3.1. Synthesis of  $2-d_1$ -Quinoline *N*-Oxide.
- 3.2. KIE Experiment
- 4. Data and Spectra of <sup>1</sup>H NMR and <sup>13</sup>C NMR

## 1. General Information

All commercial reagents and solvents were used directly without additional purification. Column chromatography was performed on silica gel 200-300 mesh. <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were registered on a Bruker Ascend<sup>TM</sup> 400 spectrometer (Germany). Chemical shifts were reported in units (ppm) referenced to 0.0 ppm of TMS in the <sup>1</sup>H spectrum and 77.0 ppm of CDCl<sub>3</sub> in the <sup>13</sup>C spectrum. All coupling constants were reported in Hertz (Hz). HRMS data were obtained on a Waters LCT Premierxe<sup>TM</sup> (USA).

#### 2. Experimental Section

#### 2.1. General Procedure to Prepare Quinoline N-Oxide Derivatives

Under vigorous magnetic stirring, 3-Chloroperbenzoicacid (*m*CPBA) (345 mg, 2 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (5 mL) was dropped into solution of quinoline derivatives (2 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (5 mL) cooled to 0°C. After the completion of this course, the reaction mixture was allowed up to room temperature and stirred overnight. An aqueous solution of saturated NaHCO<sub>3</sub> was added to the mixture to neutralize residual *m*CPBA. The resulting mixture was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3x 10 mL). The organic phase were combined and washed with a saturated NaCl solution (3x 5 mL). The organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and evaporated under reduced pressure to give crude product, which was purified by column chromatography (silica gel 200-300 mesh, EtOAc: methanol (8:1) as eluent). The product was identified by ¹H NMR and MS spectra and compared to the previous literature.

#### 2.2 General Procedure to Prepare O-Benzoyl hydroxylamine

Benzoyl peroxide (12.11 g, 50 mmol), dipotassium hydrogen phosphate (13.06 g, 75 mmol), and *N*,*N*-dimethyl formamide (125 mL) were added into a 500 mL, one-necked, round-bottomed flask equipped with a Teflon-coated magnetic stirbar.

Under vigorous magnetic stirring, the amine (60-125 mmol) was dropped into the system at ambient temperature. After 24h, deionized water (200 mL) was added to dissolve all solids. Then, the reaction mixture was transferred to a separatory funnel and extracted with 150 mL of ethyl acetate. The organic phase was collected and washed with saturated aq. NaHCO<sub>3</sub> solution. The organic layers were dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, filtered and concentrated by rotary evaporation to give crude product, which was purified by column chromatography to obtain desired product, which identified by <sup>1</sup>H NMR.

#### 2.3. Typical Experimental Procedures of the Electrophilic Amination

Quinoline *N*-oxide (0.2 mmol), *O*-Benzoyl hydroxylamine (0.6 mmol, 3.0 equiv.), Cu(OAc)<sub>2</sub> (0.02 mmol, 10 mol%), Ag<sub>2</sub>CO<sub>3</sub> (0.02 mmol, 10 mol%), 'BuOH (1 mL) were charged into a 30 mL pressure tube sealed with rubber plugs under air atmosphere. The reaction mixture was stirred at 80 °C for 24 h. After the starting material was completely consumed (based on thin layer chromatography (TLC) monitoring, EtOAc: methanol as eluent), the reaction was cooled down to room temperature. The mixture was passed through a short pad of celite, washing with a mixture of methanol/Ethyl acetate in a 1 : 1 ratio repeatedly. The organic layer was concentrated under reduced pressure to give a crude oil, which was purified by column chromatography on silica gel (200-300 mesh) to afford desired products.<sup>2</sup>

#### 3. Kinetic Isotope Effect Studies in the Amidation of Quinoline N-Oxides

#### 3.1. Synthesis of 2-d1-Quinoline N-Oxide.

D<sub>2</sub>O (1.5 mL), NaOH (200 mg, 5 mmol), quinoline *N*-oxide (258 mg, 2.0 mmol) were weighed into 30-mL pressure tube sealed with rubber plugs. The reaction mixture was stirred at 100 °C for overnight. After cooling to room temperature, the mixture was then extracted with Chloroform (3 x 10 mL). The combined organic phases were washed with saturated NaCl solution (3 x 5 mL), dried over MgSO<sub>4</sub>, and filtered. Chloroform was removed under reduced pressure to obtain the product. Deuterium incorporation was detected to be 91% by ¹H NMR in DCCl<sub>3</sub>. Peak areas at 8.76 ppm and 8.53 ppm were compared to obtain the deuterium incorporation (see ¹H spectrum). Spectral data were consistent with related reports.<sup>3</sup>

## 3.2. KIE Experiment

2-d1-quinoline *N*-oxide(0.1 mmol) and quinoline *N*-oxide (0.1 mmol), *O*-Benzoyl hydroxylamine (0.6 mmol), Cu(OAc)<sub>2</sub> (0.02 mmol), and Ag<sub>2</sub>CO<sub>3</sub> (0.02 mmol),

BuOH (1 mL) were added into tube sealed with rubber plugs under air atmosphere. The system was stirred at 80 °C for 5 minutes. After cold quenching rapidly in a cold pool, the mixture was passed through a short pad of celite and washed with methanol/ethyl acetate (1:1 volume ratio) to remove metal salt. The organic phase was concentrated under reduced pressure to obtain a crude mixture. Residual reactant was recovered by column chromatography on silica gel. The ratio (0.51:0.49) of  $2-d_1$ -quinoline *N*-oxide to quinoline *N*-oxide in residual material was obtained by <sup>1</sup>H NMR spectroscopy.  $K_H/K_D$  was calculated by the following expression:

$$K_{\rm H}/K_{\rm D} = \frac{M/2 - 0.49m}{M/2 - 0.51m}$$

M, m represent the amount of 2-  $d_1$ -quinoline N-oxide and quinoline N-oxide in staring material and residual material, respectively. Here, M = 29, m = 20, which corresponds to  $K_H/K_D = 1.1$ .

#### **References:**

- (1) Liu, C.; Han, N.; Song, X.-X.; Qiu, J.-S. Eur. J. Org. Chem. 2010, 29, 5548.
- (2) (a) Qiu, Y.-T; Liu, Y.-H.; Yang, K.; Hong, W.-K.; Li, Z.; Wang, Z.-Y.; Yao, Z.-Y.; Jiang, S. *Org. Lett.*, **2011**, *13*, 3556, (b) Berg, M.; Bal, G.; Goeminne, A.; Veken, P. V.; Versées, W.; Steyaert, J.; Haemers, A.; Augustyns, K. *ChemMedChem.* **2009**, *4*, 249.
- (3) Sylvester, K. T.; Wu, K.; Doyle, A. G.; J. Am. Chem. Soc., 2012, 134, 16967.

#### 4. Data and Spectra of <sup>1</sup>H NMR and <sup>13</sup>C NMR

**2-morpholinoquinoline 1-oxide (3a):** obtained as pale yellow solid (77% yield),  ${}^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.68 (d, J = 8.8 Hz, 1H), 7.80–7.68 (m, 3H), 7.51 (t, 1H), 7.06 (d, 1H), 4.02–3.96 (m, 4H), 3.66–3.60 (m, 4H). ${}^{13}$ C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  130.78, 127.75, 127.02, 126.23, 118.69, 113.28, 77.34, 66.80, 47.91. HRMS (ESI) Calcd. For  $C_{13}H_{15}N_2O_2$ : [M+H]+, 231.1134. Found: m/z 243.1128.

**6-methyl-2-morpholinoquinoline 1-oxide (3b):** obtained as white solid (90% yield), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.47 (d, J = 9.0 Hz, 1H), 7.60–7.39 (m, 3H), 6.93 (d, J = 9.0 Hz, 1H), 3.89 (t, J = 4.6 Hz, 4H), 3.51 (d, J = 4.6 Hz, 4H), 2.41 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  149.84, 140.70, 136.20, 132.86, 126.77, 126.60, 125.83, 118.52, 113.23, 66.81, 47.96, 21.14. HRMS (ESI) Calcd. For C<sub>14</sub>H<sub>17</sub>N<sub>2</sub>O<sub>2</sub>: [M+H]<sup>+</sup>, 245.1290. Found: m/z 245.1289.

**3-methyl-2-morpholinoquinoline 1-oxide (3c):** obtained as white solid (83% yield), <sup>1</sup>H NMR (400 MHz, CDCl3)  $\delta$  8.63 (d, J = 8.8, 1H), 7.76–7.61 (m, 2H), 7.59–7.47 (m, 2H), 3.91 (d, J = 4.7 Hz, 4H), 3.49 (s, 4H), 2.49 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl3)  $\delta$  150.03, 141.13, 130.44, 129.39, 127.41, 127.36, 127.14, 126.95, 119.14, 67.66,

48.21, 19.09. HRMS (ESI) Calcd. For  $C_{14}H_{17}N_2O_2$ : [M+H]<sup>+</sup>, 245.1290. Found: m/z 245.1291.

**5-methoxy-2-morpholinoquinoline 1-oxide (3d):** obtained as white solid (60% yield),  ${}^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.23 (d, J = 8.9 Hz, 1H), 8.10 (d, J = 9.3 Hz, 1H), 7.65 (t, J = 8.4 Hz, 1H), 7.00 (d, J = 9.3 Hz, 1H), 6.86 (d, J = 7.8 Hz, 1H), 4.01 (s, 3H), 4.01–3.96 (m, 4H), 3.65 (d, 4H).  ${}^{13}$ C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  155.67, 150.80, 143.21, 131.05, 121.96, 118.02, 111.80, 110.67, 104.66, 66.78, 55.95, 47.93. HRMS (ESI) Calcd. For  $C_{14}H_{17}N_{2}O_{3}$ : [M+H]<sup>+</sup>, 261.1239. Found: m/z 261.1240.

**2-morpholino-5-nitroquinoline 1-oxide (3e):** obtained as red solid (51% yield),  ${}^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  9.07 (d, J = 8.8 Hz, 1H), 8.47 (d, J = 9.7 Hz, 1H), 8.29 (d, J = 7.7 Hz, 1H), 7.82 (t, J = 8.3 Hz, 1H), 7.27 (s, 1H), 4.00 (t, J = 4.7 Hz, 4H), 3.71 (d, J = 4.7 Hz, 4H).  ${}^{13}$ C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  150.49, 145.91, 143.21, 128.88, 125.18, 123.73, 122.32, 118.70, 116.32, 66.68, 47.86. HRMS (ESI) Calcd. For  $C_{13}H_{14}N_3O_4$ : [M+H]+, 276.0984. Found: m/z 243.0981.

**4-chloro-2-morpholinoquinoline 1-oxide(3f):** obtained as pale yellow solid (71% yield),  $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.71 (d, J = 8.8 Hz, 1H), 8.21–8.08 (d, 1H), 7.84–7.80 (t, 1H), 7.62 (t, 1H), 7.16 (s, 1H), 4.11–3.93 (m, 4H), 3.64 (s, 4H).  $^{13}$ C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  149.98, 142.62, 131.65, 131.34, 126.96, 124.89, 123.46, 119.14, 113.44, 66.68, 47.94. HRMS (ESI) Calcd. For  $C_{13}H_{14}ClN_2O_2$ : [M+H]<sup>+</sup>, 265.0744. Found: m/z 265.0749.

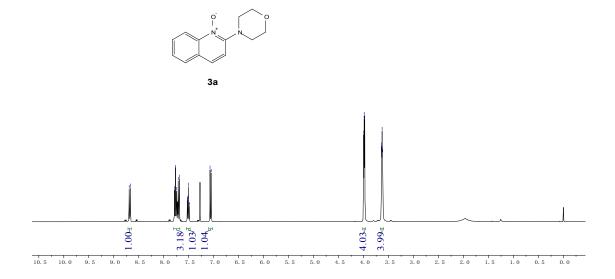
**6-chloro-2-morpholinoquinoline 1-oxide(3g):** obtained as yellow solid (73% yield),  $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.62 (d, 1H), 7.75 (d, 1H), 7.71–7.52 (d, 2H), 7.08 (d, 1H), 3.98 (s, 4H), 3.63 (s, 4H).  $^{13}$ C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  150.38, 140.82, 132.17, 131.36, 126.44, 126.31, 125.80, 120.63, 114.51, 66.75, 47.88. HRMS (ESI) Calcd. For  $C_{13}H_{14}ClN_{2}O_{2}$ : [M+H]<sup>+</sup>, 265.0744. Found: m/z 265.0752.

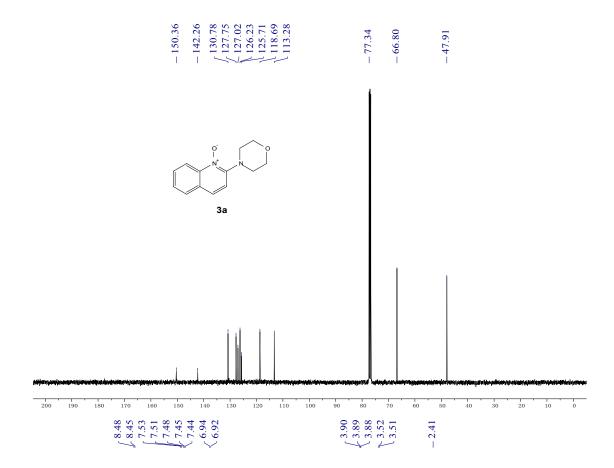
**4-bromo-2-morpholinoquinoline 1-oxide (3h):** obtained as pale yellow solid (55% yield),  $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.70 (d, 1H), 8.07 (t, 1H), 7.88–7.71 (m, 1H), 7.71–7.51 (m, 1H), 7.34 (d, 1H), 3.98 (s, 4H), 3.62 (s, 4H).  $^{13}$ C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  150.05, 142.63, 131.61, 127.54, 127.19, 124.77, 121.47, 119.12, 116.99, 66.68, 47.94. HRMS (ESI) Calcd. For C<sub>13</sub>H<sub>14</sub>BrN<sub>2</sub>O<sub>2</sub>: [M+H]<sup>+</sup>, 309.0239. Found: m/z 309.0231.

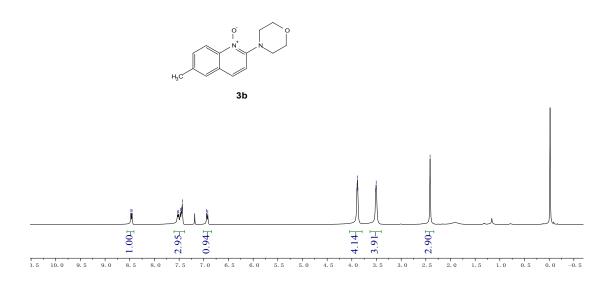
**1-morpholinoisoquinoline 2-oxide (3i):** obtained as white solid (80% yield),  $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.21 (d, J = 8.3 Hz, 1H), 8.06 (d, J = 7.2 Hz, 1H), 7.77 (d, J = 7.9 Hz, 1H), 7.62 (t, 2H), 7.45 (d, J = 7.1 Hz, 1H), 3.98 (s, 4H), 3.60 (s, 4H).  $^{13}$ C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  149.28, 137.58, 131.00, 128.89, 128.79, 127.45, 127.12, 124.10, 120.41, 67.55, 48.63. HRMS (ESI) Calcd. For  $C_{13}H_{15}N_2O_2$ : [M+H]<sup>+</sup>, 231.1134. Found: m/z 243.1130.

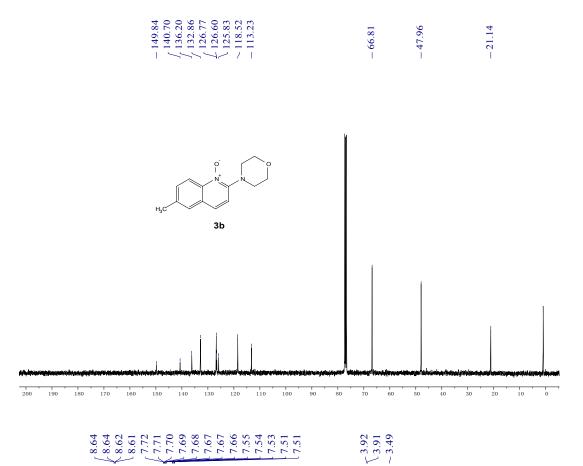
**2-morpholinoquinoxaline 1-oxide (3j):** obtained as pale yellow solid (59% yield),  ${}^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.53 (d, J = 9.8 Hz, 2H), 8.05 (d, J = 8.2, 1H), 7.71 (d, 2H), 4.08–3.95 (m, 4H), 3.75–3.60 (m, 4H).  ${}^{13}$ C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  144.95, 140.71, 138.85, 137.15, 130.72, 129.70, 128.80, 117.92, 66.65, 47.63. HRMS (ESI) Calcd. For  $C_{12}H_{14}N_3O_2$ :  $[M+H]^+$ , 232.1086. Found: m/z 232.1082.

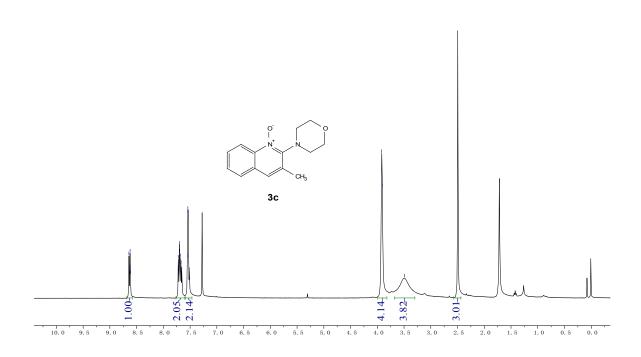
**2-(piperidin-1-yl)quinoline 1-oxide (3k):** obtained as pale yellow solid (65% yield), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.67 (d, J = 8.7 Hz, 1H), 7.84–7.57 (m, 3H), 7.47 (t, J


= 7.5 Hz, 1H), 7.09 (d, J = 9.1 Hz, 1H), 3.56 (t, J = 5.3 Hz, 4H), 1.85 (t, J = 5.3 Hz, 4H), 1.72 (d, J = 5.5 Hz, 2H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  151.38, 142.35, 130.49, 127.60, 126.86, 125.68, 125.36, 118.66, 114.15, 48.92, 25.86, 24.51. HRMS (ESI) Calcd. For C<sub>14</sub>H<sub>17</sub>N<sub>2</sub>O: [M+H]<sup>+</sup>, 229.1341. Found: m/z 229.1337.


**2-(4-methylpiperidin-1-yl)quinoline 1-oxide (3l):** obtained as pale yellow solid (58% yield), 1H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.68 (d, J = 8.7 Hz, 1H), 7.80–7.61 (m, 3H), 7.53–7.43 (m, 1H), 7.09 (d, J = 9.1 Hz, 1H), 4.24 (d, J = 11.3 Hz, 2H), 2.94 (t, J = 11.5 Hz, 2H), 1.89–1.75 (m, 2H), 1.67 (s, 1H), 1.58 (m, 2H), 1.04 (d, J = 6.3 Hz, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  151.25, 142.34, 130.51, 127.58, 126.74, 125.70, 125.40, 118.72, 114.29, 48.24, 34.09, 31.01, 21.91. HRMS (ESI) Calcd. For  $C_{15}H_{19}N_2O$ : [M+H]+, 243.1497. Found: m/z 243.1500.


**2-(pyrrolidin-1-yl)quinoline 1-oxide (3m):** obtained as pale yellow solid (52% yield),  $^{1}$ H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.59 (d, J = 8.6 Hz, 1H), 7.83–7.55 (m, 3H), 7.39 (d, J = 7.6 Hz, 1H), 6.94 (d, J = 9.2 Hz, 1H), 3.94 (s, 4H), 2.00 (s, 4H). 13C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  148.41, 142.03, 130.72, 128.17, 127.43, 124.58, 123.86, 117.82, 112.45, 50.63, 25.47. HRMS (ESI) Calcd. For  $C_{13}H_{15}N_2O$ : [M+H]<sup>+</sup>, 215.1184. Found: m/z 215.1181.


**4-(quinolin-2-yl)morpholine (4a):** obtained as white solid (92%), <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  7.92 (d, J = 9.1 Hz, 1H), 7.72 (d, J = 8.4 Hz, 1H), 7.62 (d, J = 8.0 Hz, 1H), 7.55 (t, J = 7.7 Hz, 1H), 7.24 (d, J = 7.2 Hz, 1H), 6.96 (d, J = 9.1 Hz, 1H), 3.85 (d, J = 4.8 Hz, 4H), 3.72 (d, J = 5.0 Hz, 4H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>)  $\delta$  157.55, 147.75, 137.58, 129.61, 127.24, 126.75, 123.32, 122.67, 109.27, 66.90, 45.61. HRMS (ESI) Calcd. For C<sub>13</sub>H<sub>15</sub>N<sub>2</sub>: [M+H]<sup>+</sup>, 215.1184 Found: m/z 215.1181.


# 

