Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Supplementary Information

Synthesis of chitin and chitosan stereoisomers by

thermostable α -glucan phosphorylase-catalyzed enzymatic

polymerization of α -D-glucosamine 1-phosphate

Jun-ichi Kadokawa*, Riko Shimohigoshi, Kento Yamashita and Kazuya Yamamoto

Department of Chemistry, Biotechnology, and Chemical Engineering, Graduate School

of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima

890-0065, Japan

Table of Contents

Experimental Section

1. Enzymatic polymerization for MALDI-TOF MS measurement	S2
2. Glucoamylase treatment for MALDI-TOF MS measurement	S 3
3. N-Acetylation for MALDI-TOF MS measurement	S4
4. Synthesis of standard amylose samples	S5
Figures S1-3	

Experimental Section

1. Enzymatic polymerization for MALDI-TOF MS measurement

A mixture of GlcN-1-P (12.7 mg, 0.0490 mmol) and Glc₃ (2.4 mg, 4.76 μ mol) in 0.5 M ammonia buffer (pH 8.6, 100 μ L, 0.050 mmol) dissolving MgCl₂ (4.8 mg, 0.0505 mmol) was incubated in the presence of thermostable α -glucan phosphorylase (20 U) at 40 °C for 7 days. After the precipitate was removed by centrifugation, supernatant was maintained at 100 °C for 1 h in order to deactivate the enzyme. The deactivated enzyme was removed by centrifugation and the supernatant was lyophilized and subjected to MALDI-TOF MS measurement.

MALDI-TOF MS (Fig. 1b):

	Found: m/z	Calcd: m/z
[GlcN-Glc ₃ +Na] ⁺	688.5511	688.2276
$[GlcN_2-Glc_3+Na]^+$	849.5557	849.2964
[GlcN ₃ -Glc ₃ +Na] ⁺	1010.5670	1010.3652
$[GlcN_4-Glc_3+Na]^+$	1171.5513	1171.4340
$[GlcN_5-Glc_3+Na]^+$	1332.5306	1332.5028
$[GlcN_6-Glc_3+Na]^+$	1493.4929	1493.5716
[GlcN7-Glc3+Na] ⁺	1654.4647	1654.6404
[GlcN ₈ -Glc ₃ +Na] ⁺	1815.4103	1815.7092
$[GlcN_9-Glc_3+Na]^+$	1976.3684	1976.7780
$[GlcN_{10}-Glc_3+Na]^+$	2138.3005	2137.8468
[GlcN ₁₁ -Glc ₃ +Na] ⁺	2298.2569	2298.9156
$[GlcN_{12}-Glc_3+Na]^+$	2460.1899	2459.9844

2. Glucoamylase treatment for MALDI-TOF MS measurement

Glucoamylase (20 U) was added to a solution of the above enzymatic polymerization product in water (1.0 mL) and the mixture was incubated at 40 °C for 1 h. The reaction mixture was then maintained at 100 °C for 1 h in order to deactivate the enzyme. The deactivated enzyme was removed by centrifugation and the supernatant was lyophilized and subjected to MALDI-TOF MS measurement.

MALDI-TOF MS (Fig. S1):

	Found: m/z	Calcd: m/z
[GlcN-Glc ₃ +Na] ⁺	688.3587	688.2276
$[GlcN_2-Glc_3+Na]^+$	849.3421	849.2964
$[GlcN_3-Glc_3+Na]^+$	1010.2971	1010.3652
$[GlcN_4-Glc_3+Na]^+$	1171.2575	1171.4340
[GlcN ₅ -Glc ₃ +Na] ⁺	1332.1765	1332.5028
$[GlcN_6-Glc_3+Na]^+$	1493.0937	1493.5716
[GlcN7-Glc3+Na] ⁺	1653.9938	1654.6404
$[GlcN_8-Glc_3+Na]^+$	1814.9132	1815.7092
$[GlcN_9-Glc_3+Na]^+$	1976.8174	1976.7780
$[GlcN_{10}-Glc_3+Na]^+$	2136.7214	2137.8468
$\left[\text{GlcN}_{11}\text{-}\text{Glc}_3\text{+}\text{Na}\right]^+$	2298.6161	2298.9156
$[GlcN_{12}-Glc_3+Na]^+$	2459.5253	2459.9844

3. N-Acetylation for MALDI-TOF MS measurement

To a solution of the above glucoamylase-treated product (18.9 mg) and Na₂CO₃ (5.4 mg, 0.0510 mmol) in water (1.0 mL) was added acetic anhydride (0.0049 mL, 0.0520 mmol) and the mixture was stirred at room temperature for 10 min. After the reaction mixture was treated successively with cation- and anion-exchange resins (Amberlite IR-120(plus) (H) and Amberlite IRA-400J Cl, respectively) for 5 min each, the solution was filtered, lyophilized, and subjected to MALDI-TOF MS measurement. MALDI-TOF MS (Fig. 1c):

	Found: <i>m/z</i>	Calcd: m/z
[GlcNAc-Glc ₃ +Na] ⁺	730.5252	730.2382
[GlcNAc ₂ -Glc ₃ +Na] ⁺	933.5286	933.3176
$[GlcNAc_3-Glc_3+Na]^+$	1136.5005	1136.3970
$[GlcNAc_4-Glc_3+Na]^+$	1339.4472	1339.4764
$[GlcNAc_5-Glc_3+Na]^+$	1542.3622	1542.5558
$[GlcNAc_6-Glc_3+Na]^+$	1745.2684	1745.6352
[GlcNAc7-Glc3+Na] ⁺	1948.1881	1948.7146
$[GlcNAc_8-Glc_3+Na]^+$	2152.0883	2151.7940
$[GlcNAc_9-Glc_3+Na]^+$	2353.9885	2354.8734
[GlcNAc ₁₀ -Glc ₃ +Na] ⁺	2557.83001	2557.9528

4. Synthesis of standard amylose samples

Solutions of Glc-1-P (96.0, 128, and 150 mg) with Glc₃ primer (5.5 mg, 0.0109 mmol) in 2.0 mol/L acetate buffer (pH 6.2, 5.0 mL) was incubated in the presence of thermostable α-glucan phosphorylase (40 U) at 40 °C for 15 h (feed ratios of Glc-1- $P/Glc_3 = 30, 40, and 50$). After the reaction mixtures were then maintained at 100 °C for 1 h in order to deactivate the enzyme, the deactivated enzyme was removed by centrifugation. Then, the supernatants were dialyzed against water (molecular cut off; 1000) and lyophilized to give enzymatically synthesized standard amylose samples. The degrees of polymerization of the amylose samples were determined by UV-Vis analysis of the complexes with iodine as follows (K. Kobayashi, S. Kamiya, and N. Enomoto, Macromolecules, 1996, 29, 8670-8676). A standard iodine-iodide solution was prepared by dissolving potassium iodide (26.3 mg, 0.158 mmol) and iodine (26.3 mg, 0.207 mmol) in water (50 mL). The amylose sample (1.0 mg) was dissolved in DMSO (0.20 mL) and the standard iodine-iodide solution (1.0 mL) was added to the solution. After the resulting solution was diluted with water (10 mL), the violet solution was then characterized by UV-vis spectroscopy to determine the degree of polymerization (DP) values as follows; 53.0 for 30 equiv., 55.7 for 40 equiv., and 59.6 for 50 equiv. (Glc-1-P/Glc₃). Then, the amylose samples were used as the standards for GPC measurement.

Fig. S1 ³¹P and ¹H NMR spectra (**a** and **b**, respectively) of precipitate from reaction mixture in enzymatic polymerization (GlcN-1-P/Glc₃ = 10:1) in DCl/D₂O.

Fig. S2 MALDI-TOF MS of glucoamylase-treated materials from enzymatic polymerization products (GlcN-1-P/Glc₃ = 10:1).

Fig. S3 ¹H-¹H COSY NMR spectrum of *O*-acetylated aminopolysaccharide (run 3) in DMSO- d_6 .