Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Supporting Information for:

Copper-mediated tandem reaction of β-ketoesters/ketones with tertiary amines

for the synthesis of 2,3-dihydrofurans

Shengmei Guo, Lin Lu, Jiuhan Gong,

Zheng Zhu, Feng Xu, Zhenhong Wei and Hu Cai*

College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China E-mail: Caihu@ncu.edu.cn

CONTENTS

- 1 General experimental details and materials
- 2 Optimization of the reaction conditions
- 3 General procedure Copper Promoted Tandem Reaction
- 4 Experimental characterization data and X-Ray for products
- 5 Copies of product ¹H NMR and ¹³C NMR

General experiment detail and metrials

Experimental: All non-aqueous reactions and manipulations were performed in air atmosphere using standard Schlenk techniques. All solvents before use were dried and degassed by standard methods and stored under nitrogen. All reactions were monitored by TLC with silica gel-coated plates. NMR spectra were recorded on Agilent 400 spectrometers. Chemical shifts are reported in parts per million (ppm) down field from TMS with the solvent resonance as the internal standard. Coupling constants (J) are reported in Hz and refer to apparent peak multiplications. High resolution mass spectra (HRMS) Bruker Compass DataAnalysis 4.0 mass instrament (ESI). Single-crystal X-ray diffraction analysis was used on a Bruker Apex-II area-detector diffractometer at *ca* 293 K.·

Optimization of the Reaction Conditions

A solution of CuX, ethyl 3-oxo-3-phenylpropanoate (96 mg, 0.5 mmol), TMEDA (70 mg, 1.2 equiv) in 2 mL of solvent was stirred 80-120 °C for 6 h under oxidative conditions. After warming to room temperature, the mixture was washed with water; then EA extract three times. Organic layer was dried over Na_2SO_4 and concentrated under reduced pressure to leave a crude solid, which was purified by column chromatography on silica gel.

Table 1 Screen of CuX^[a]

Ph OEt + 1a	$-N$ N $ \frac{\text{Promoter, O}_2}{\text{CH}_3\text{CN} (2 \text{ mL}), 100^{-2}}$	$\rightarrow C$ Ph O Ph O Ph O Ph O $2a$
entry	CuX	yield $(\%)^b$
1	no	0
2	CuCl	trace
3	CuI	trace
4	CuBr	trace
5	CuF	trace
6	Cu ₂ O	trace
7	CuCl ₂	63
8	CuBr ₂	24
9	CuCN	trace
10	CuOAc	trace
11	Cu(OAc) ₂	trace
12 ^c	$Cu(acac)_2$	trace
13	$CuSO_4$	trace
14	I ₂	0

^a **1a** (0.5 mmol), TMEDA (0.6 mmol), copper (0.6 mmol), O₂ (1 atm), CH₃CN (2 mL), 100 °C, 6 h; ^b Isolated yield;

Table 2 Screen of solvent ^[a]	Table 2	2 Screen	of solvent ^[a]
--	---------	----------	---------------------------

Ph Ph 1a	$-N$ N $ \frac{CuCl_2, O_2 (1atm)}{solvent (2 mL), 100 °C}$	OEt OEt Ph O Ph 2a
entry	Solvent(1mL)	Yield $(\%)^b$
1	DMSO	17
2	THF	trace
3	Dioxane	trace
4	CH ₃ CN	64
6	DMF	trace
7	hexane	trace
8	Xyl	trace
9	DMA	22
10	TBME	trace
11	DCM	trace
12^{c}	EtOH	28
13	Toluene	trace
14	DME	trace
15	Mesitylene	trace

 $^{\rm a}$ 1a (0.5 mmol), TMEDA (0.6 mmol), CuCl_2 (0.6 mmol), O_2 (1 atm), solvent (2 mL), 100 °C 6 h; $^{\rm b}$ Isolated yield;

Table 3 Screen of Oxidant [a]

	Ph O O $+$ $-N$ N $ \frac{CuCl_2, Oxidant}{CH_3CN (2 mL), T}$	
entry	Oxidant	Yield (%) ^{b}
1	TBHP(70%, aq)	trace
2	DTBP	81
3	Oxone	trace

4	m-CPBA	trace
5	$K_2S_2O_8$	trace
6	DDQ	38
7	O ₂	64
8	Benzoyl Peroxide	trace

^a**1a** (0.5 mmol), TMEDA (0.6 mmol), CuCl₂ (0.6 mmol), Oxidant (4 equiv), solvent (2 mL), 100 ^oC, 6 h; ^b isolated yield.

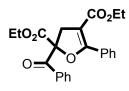
Table 4 Screen of other conditions [a]

	Ph OEt + $-N$ N $-\frac{CuCl_2, DTBP}{CH_3CN (2 mL), 100 °C}$	Ph OEt
entry	promoter	Yield $(\%)^b$
1	CuCl ₂ (2 equiv)	trace
2	$CuCl_2$ (0.2 equiv)	trace
3	CuCl ₂ (1.5 equiv)	70
4	CuCl ₂ (1 equiv)	64
5	CuCl ₂ (1.2 equiv)	81
6 ^c	CuCl ₂ (1.2 equiv)	79
7 ^d	$CuCl_2$ (1.2 equiv)	68
8e	$CuCl_2$ (1.2 equiv)	82
9 ^f	$CuCl_2$ (1.2 equiv)	70
10 ^g	$CuCl_2$ (1.2 equiv)	66
11 ^h	$CuCl_2$ (1.2 equiv)	74
12 ⁱ	CuCl ₂ (1.2 equiv)	80

^a1a (0.5 mmol), TMEDA (0.6 mmol), CuCl₂ (0.6 mmol), DTBP (4 eq), CH₃CN (2 mL), 100 °C, 6 h; ^b isolated yield; ^c120 °C; ^d 80 °C; ^e DTBP (2 eq); ^f DTBP (1.2 equiv); ^g DTBP (2 eq), 2 h; ^h DTBP (2 equiv), 4 h; ⁱ DTBP (1 equiv), 12 h.

Table 4 Screen of other condition [a]

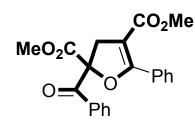
	Ph H 1a +	Amine CuCl ₂ , DTBP CH ₃ CN (2 mL), 100 °C	Ph O Ph O Ph O Ph O $2a$
entry		Amine	Yield $(\%)^b$
1		Et ₃ N	trace
2		PhNHCH ₃	46
3		BnNHCH ₃	trace
4		PhN(CH ₃) ₂	trace


^a1a (0.5 mmol), Amine (0.6 mmol), CuCl₂ (0.6 mmol), DTBP (4 eq), CH₃CN (2 mL),

100 °C, 6 h; ^b isolated yield;

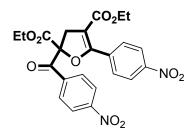
General procedure Cu- promoter Tandem Reaction

CuCl₂ (80.7 mg, 0.6 mmol), β -ketoester derivatives (0.5 mmol, 1 eq) were added to a 50 mL Schleck tube under air. Then CH₃CN (2 mL), TMEDA (1.2 equiv) and DTBP (2 equiv) were added. The Schleck tube was sealed with a rubber septum and stirred for 6 h at 100 °C. The mixture was allowed to cool to room temperature, and washed with water, EA extract three times. The organic layer dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel and eluted with EtOAc/hexanes (1/20–1/10) to afford the desired product.


1. Diethyl 2-benzoyl-5-phenyl-2,3-dihydrofuran-2,4-dicarboxylate (2a). The title compound was prepared according to the general procedure and purified by column

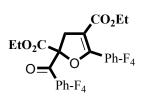
chromatography to give a white solid, 82% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 7.6 Hz, 2H), 7.81 (d, J = 7.2 Hz, 2H), 7.58 (t, J = 7.2 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 7.37 (dt, J = 14.4, 7.2 Hz, 3H), 4.19 (dq, J = 32, 6.8 Hz, 5H), 3.45 (d, J =

16.4 Hz, 1H), 1.23 (t, J = 7.2 Hz, 3H), 1.14 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl3) δ 190.10, 169.27, 164.22, 162.65, 133.96, 133.64, 130.83, 129.95, 129.70, 128.88, 128.78, 127.78, 102.46, 90.15, 62.79, 60.33, 38.40, 14.32, 13.95. HRMS (ESI) calcd. for C₂₃H₂₂ Na O₆ [M+23]: 417.1309, found: 417.1330


2. Dimethyl 2-benzoyl-5-phenyl-2,3-dihydrofuran-2,4-dicarboxylate (2b). The title

compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 67% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 8.2 Hz, 2H), 7.82 (d, *J* = 8.0 Hz, 2H), 7.59 (t, *J* = 14.8 Hz, 1H), 7.47 (t, *J* =

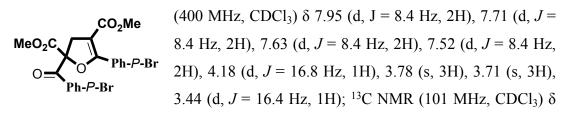
14.8 Hz, 2H), 7.38 (dt, J = 14.8, 7.4 Hz, 3H), 4.20 (d, J = 16 Hz, 1H), 3.77 (s, 3H), 3.70 (s, 3H), 3.50 (d, J = 16 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 190.03, 169.67, 164.53, 162.85, 134.03, 133.46, 130.93, 129.92, 129.61, 128.83, 128.67, 127.84, 102.08, 90.24, 53.61, 51.45, 38.48. HRMS (ESI) calcd. for C₂₁H₁₈ Na O₆ [M+23]: 389.0996, found: 389.0995.


3. Diethyl2-(4-nitrobenzoyl)-5-(4-nitrophenyl)-2,3-dihydrofuran-2,4-dicarboxyla te (2c). The title compound was prepared according to the general procedure and

purified by column chromatography to give a white solid, 83% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.34 (d, *J* = 8.8 Hz, 2H), 8.30 – 8.20 (m, 4H), 8.00 (d, *J* = 8.8 Hz, 2H), 4.29 (td, *J* = 7.2, 4.0 Hz, 2H), 4.25 (dd, *J* = 9.2, 3.2 Hz, 1H), 4.22 – 4.15 (m, 2H), 3.49 (d, *J* =

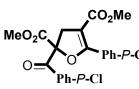
17.2 Hz, 1H), 1.27 (t, J = 7.2 Hz, 3H), 1.19 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 188.46, 168.39, 163.37, 159.49, 150.88, 149.00, 137.99, 134.48, 131.01, 130.73, 124.05, 123.13, 105.70, 90.29, 63.51, 61.02, 38.52, 14.31, 14.03. HRMS (ESI) calcd. for C₂₁H₁₆N₂Na O₁₀ [M+23]: 479.0702, found: 479.0708.

4. Diethyl2-(2,3,4,5-tetrafluorobenzoyl)-5-(2,3,4,5-tetrafluorophenyl)-2,3-dihydr ofuran-2,4-dicarboxylate (2d). The title compound was prepared according to the



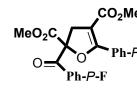
 $\begin{array}{l} \text{general procedure and purified by column chromatography} \\ \text{to give a white solid, 93\% yield. }^{1}\text{H} \text{ NMR (400 MHz,} \\ \text{Ph-F}_{4} \quad \text{CDCl}_{3}) \ \delta \ 7.60 \ (d, J = 7.2 \text{ Hz}, 1\text{H}), \ 7.19 \ (d, J = 7.6 \text{ Hz}, 1\text{H}), \\ 4.35 \ (dd, J = 11.2, \ 6.8 \text{ Hz}, 2\text{H}), \ 4.14 \ (q, J = 7.2 \text{ Hz}, 2\text{H}), \end{array}$

3.95 (d, J = 16.8 Hz, 1H), 3.55 (d, J = 16.8 Hz, 1H), 1.30 (t, J = 7.2 Hz, 3H), 1.20 (t, J = 7.2 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 187.39, 186.85, 166.86, 162.75, 154.17, 148.59, 148.00, 146.07, 145.45, 142.95, 142.40, 140.83, 139.71, 112.60, 107.49, 91.62, 62.88, 60.90, 38.12, 14.06. HRMS (ESI) calcd. for C₂₃H₁₄F₈ Na O₆ [M+23]: 561.0555, found: 561.0552.


5. Dimethyl2-(4-bromobenzoyl)-5-(4-bromophenyl)-2,3-dihydrofuran-2,4-dicarb-

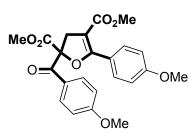
oxylate (2e). The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 87% yield. ¹H NMR

188.99, 169.44, 164.33, 161.55, 132.32, 132.15, 131.44, 131.27, 131.17, 129.75, 127.43, 125.64, 102.81, 90.20, 53.78, 51.67, 38.46. HRMS (ESI) calcd. for $C_{21}H_{16}$ Br₂Na O₆ [M+23]: 544.9206, found: 544.9209.


6. Dimethyl 2-(4-chlorobenzoyl)-5-(4-chlorophenyl)-2,3-dihydrofuran- 2,4- dicarboxylate (2f). The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 99% yield. ¹H NMR

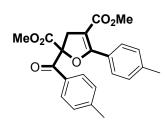
 $\begin{array}{l} \textbf{D_2Me} \\ \textbf{D_2Me} \end{array} \begin{array}{l} (400 \text{ MHz, CDCl}_3) \ \delta \ 8.04 \ (d, \ J = 8.4 \text{ Hz}, 2\text{H}), \ 7.79 \ (d, \ J = 8.4 \text{ Hz}, 2\text{H}), \ 7.46 \ (d, \ J = 8.4 \text{ Hz}, 2\text{H}), \ 7.36 \ (d, \ J = 8.4 \text{ Hz}, 2\text{H}), \ 7.36 \ (d, \ J = 8.4 \text{ Hz}, 2\text{H}), \ 7.36 \ (d, \ J = 8.4 \text{ Hz}, 2\text{H}), \ 7.36 \ (d, \ J = 8.4 \text{ Hz}, 2\text{H}), \ 7.36 \ (d, \ J = 8.4 \text{ Hz}, 3\text{Hz}, 3\text{Hz}), \ 3.71 \ (s, 3\text{H}), \ 3.45 \ (d, \ J = 16.4 \text{ Hz}, 1\text{H}); \ ^{13}\text{C} \text{ NMR} \ (101 \text{ MHz}, \text{CDCl}_3) \ \delta \end{array}$

188.76, 169.45, 164.33, 161.47, 140.85, 137.13, 131.73, 131.38, 130.99, 129.30, 128.27, 126.97, 102.70, 90.19, 53.74, 51.58, 38.43. HRMS (ESI) calcd. for $C_{21}H_{16}$ $Cl_2Na O_6$ [M+23]: 457.0216, found: 457.0195.


7. Dimethyl2-(4-fluorobenzoyl)-5-(4-fluorophenyl)-2,3-dihydrofuran-2,4- dicarboxylate (2g). The title compound was prepared according to the general procedure

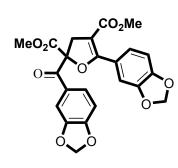
and purified by column chromatography to give a white solid, 80% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.19 – Ph-P-F 8.10 (m, 2H), 7.92 – 7.82 (m, 2H), 7.16 (t, J = 8.0 Hz, 2H), 7.07 (t, J = 8.4 Hz, 2H), 4.20 (d, J = 16.4 Hz, 1H), 3.78 (s,

3H), 3.71 (s, 3H), 3.46 (d, J = 16.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 188.40, 169.60, 167.58, 165.47, 165.02, 164.47, 162.97, 161.69, 132.88, 131.99, 129.85, 124.69, 116.07, 114.99, 102.08, 90.20, 53.69, 51.52, 38.41. HRMS (ESI) calcd. for C₂₁H₁₆F₂Na O₆ [M+23]: 425.0807, found:425.0797.


8. Dimethyl2-(4-methoxybenzoyl)-5-(4-methoxyphenyl)-2,3-dihydrofuran-2,4dicarboxylate (2h). The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 68% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 8.4 Hz, 2H), 7.87 (d, J = 8.4 Hz, 2H), 6.95

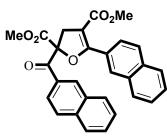
(d, J = 8.8 Hz, 2H), 6.89 (d, J = 8.8 Hz, 2H), 4.18 (d, J = 16.0 Hz, 1H), 3.87 (s, 3H), 3.82 (s, 3H), 3.76 (s, 3H), 3.70 (s, 3H), 3.44 (d, J = 16.2 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 188.42, 169.95, 164.75, 164.08, 162.69, 161.53, 132.35, 131.34, 126.28, 120.97,

113.97, 113.13, 100.35, 90.00, 55.53, 55.32, 53.35, 51.25, 38.30. HRMS (ESI) calcd. for C₂₃H₂₂Na O₈ [M+23]: 449.1207, found: 449.1212.

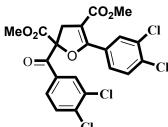

9. Dimethyl 2-(4-methylbenzoyl)-5-(p-tolyl)-2,3-dihydrofuran-2,4-dicarboxylate

(2i). The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 78% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 8.0 Hz, 2H), 7.74 (d, J = 8.0 Hz, 2H), 7.26 (d, J = 8.0 Hz, 2H), 7.18 (d, J =

8.0 Hz, 2H), 4.17 (d, J = 16.4 Hz, 1H), 3.76 (s, 3H), 3.69 (s, 3H), 3.46 (d, J = 16.4 Hz, 1H), 2.41 (s, 3H), 2.36 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 189.63, 169.90, 164.72, 163.15, 145.11, 141.33, 130.94, 130.12, 129.57, 128.56, 125.87, 101.37, 90.18, 53.51, 51.36, 38.42, 29.81, 21.85, 14.24. HRMS (ESI) calcd. for C₂₃H₂₂ Na O ₆ [M+23]: 417.1309, found: 417.1312.

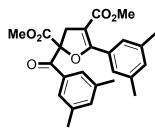

10. Dimethyl5-(benzo[d][1,3]dioxol-5-yl)-2-(benzo[d][1,3]dioxole-5-carbonyl)-2,3dihydrofuran-2,4-dicarboxylate (2j). The title compound was prepared according to

the general procedure and purified by column chromatography to give a white solid, 70% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 8.0 Hz, 1H), 7.56 (s, 1H), 7.48 (d, *J* = 8.0 Hz, 1H), 7.39 (s, 1H), 6.87 (d, *J* = 8.4 Hz, 1H), 6.82 (d, J = 8.4 Hz, 1H), 6.06 (s, 2H), 5.99 (s, 2H), 4.17 (d, *J* = 16.4 Hz, 1H), 3.77 (s, 3H), 3.71 (s, 3H), 3.42 (d, *J* = 16.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ


199.03, 187.99, 169.93, 164.70, 162.29, 152.68, 149.83, 148.36, 147.17, 128.01, 126.84, 124.94, 122.32, 109.96, 109.54, 108.32, 107.87, 102.15, 101.56, 100.99, 90.00, 53.62, 51.43, 38.58. HRMS (ESI) calcd. for $C_{23}H_{18}$ Na O_{10} [M+23]: 477.0792, found: 477.0794.

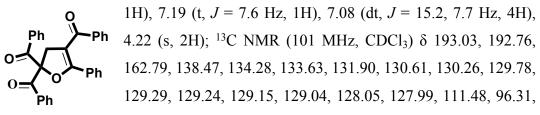
11. Dimethyl2-(2-naphthoyl)-5-(naphthalen-2-yl)-2,3-dihydrofuran-2,4-dicarboxylate (2k). The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 95% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.74 (s, 1H), 8.40 (s, 1H), 8.14 (d, J = 8.8 Hz, 1H), 7.99 (d, J = 8.0 Hz,

1H), 7.95 - 7.76 (m, 6H), 7.65 - 7.42 (m, 4H), 4.31 (d, J = 16.4 Hz, 1H), 3.79 (s, 3H), 3.72 (s, 3H), 3.63 (d, J = 16.4 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 190.19, 169.82, 164.63, 162.91, 135.96, 134.44, 132.53, 132.47, 132.40, 130.81, 130.38, 130.18, 129.27, 129.04, 128.71,


127.86, 127.70, 127.59, 127.38, 127.07, 126.42, 126.08, 125.00, 102.45, 90.59, 53.65, 51.54, 38.80. HRMS (ESI) calcd. for $C_{29}H_{23}O_6$ [M+1]: 467.1489, found: 467.1502. **12. Dimethyl2-(3,4-dichlorobenzoyl)-5-(3,4-dichlorophenyl)-2,3-dihydrofuran-2,4** -dicarboxylate (2l). The title compound was prepared according to the general

procedure and purified by column chromatography to give a white solid, 87% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (s, 1H), 7.97 (s, 1H), 7.92 (d, *J* = 8.4 Hz, 1H), 7.73 (d, *J* = 7.2 Hz, 1H), 7.59 (d, *J* = 8.4 Hz, 1H), 7.48 (d, *J* = 8.4 Hz, 1H), 4.19 (d, *J* = 24.0 Hz, 1H), 3.81

(s, 3H), 3.73 (s, 3H), 3.49 (d, J = 16.8 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 188.02, 169.01, 164.07, 159.80, 139.21, 135.44, 133.94, 132.94, 132.52, 131.98, 131.51, 131.13, 130.69, 130.17, 128.83, 128.29, 103.80, 90.27, 53.95, 51.93, 38.49. HRMS (ESI) calcd. for C₂₁H₁₄Cl₄Na O₆ [M+23]: 524.9437, found: 524.9458.

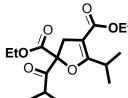

Dimethyl2-(3,4-dimethylbenzoyl)-5-(3,4-dimethylphenyl)-2,3-dihydrofuran 2,4-dicarboxylate (2m). The title compound was prepared according to the general

procedure and purified by column chromatography to give a white solid, 86% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 8.0 Hz, 1H), 7.19 (d, J = 7.6 Hz, 1H), 7.08 (s, 1H), 6.98 (d, J = 9.2 Hz, 3H), 4.07 (d, J = 16.0 Hz, 1H), 3.75 (s, 3H), 3.60 (s, 3H), 3.47 (d, J = 16.0 Hz, 1H), 2.50

(s, 3H), 2.31 (d, J = 6.0 Hz, 6H), 2.19 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 192.81, 169.91, 164.68, 164.42, 143.04, 140.86, 140.19, 137.39, 133.16, 130.95, 130.84, 130.03, 126.35, 126.25, 126.03, 103.88, 91.45, 53.34, 51.25, 37.93, 21.88, 21.50, 19.54. HRMS (ESI) calcd. for C₂₅H₂₆ Na O₆ [M+23]: 445.1622, found: 445.1619.

14. (5-phenyl-2,3-dihydrofuran-2,2,4-triyl)tris(phenylmethanone) (2n). The title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 73% yield.¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 7.6 Hz, 4H), 7.54 (t, *J* = 7.6 Hz, 2H), 7.50 – 7.37 (m, 6H), 7.28 (s, 2H), 7.23 (s,

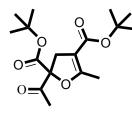
40.06. HRMS (ESI) calcd. for $C_{31}H_{22}$ Na O_4 [M+23]: 481.1410 found: 481.1413.


15. Diethyl 2-acetyl-5-methyl-2,3-dihydrofuran-2,4-dicarboxylate (20). The title compound was prepared according to the general procedure and purified by column

(400 MHz, CDCl₃) δ 4.28 (qd, J = 7.2, 2.4 Hz, 2H), 4.17 (q, J= 7.2 Hz, 2H), 3.35 (dd, J = 40.0, 16.0 Hz, 2H), 2.29 (d, J5.6 Hz, 6H), 1.29 (dd, J = 17.2, 7.2 Hz, 6H); ¹³C NMR (101

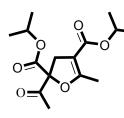
chromatography to give a white solid, 54% yield. ¹H NMR

MHz, CDCl₃) δ 201.07, 167.80, 165.50, 164.88, 102.43, 92.01, 62.84, 60.07, 35.88, 25.37, 14.47, 14.10, 13.94. HRMS (ESI) calcd. for C₁₃H₁₈ Na O₆ [M+23]: 293.0996, found: 293.1002.


16. Diethyl 2,5-diisopropyl-2,3-dihydrofuran-2,4-dicarboxylate (2p). The title compound was prepared according to the general procedure and purified by column

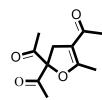
chromatography to give a white solid, 90% yield. ¹H NMR 15.6 Hz, 1H), 3.28 (d, J = 15.6 Hz, 1H), 3.09 (dt, J = 13.6,

6.8 Hz, 1H), 1.28 (dd, J = 12.8, 6.4 Hz, 6H), 1.23 – 1.13 (m, 8H), 1.10 (d, J = 6.8 Hz, 3H), 0.87 (dd, J = 15.2, 7.6 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 207.95, 173.36, 168.30, 164.95, 100.19, 91.79, 62.67, 60.06, 36.79, 36.73, 26.86, 19.73, 19.42, 19.05, 18.96, 14.55, 14.23. HRMS (ESI) calcd. for C₁₇H₂₆ Na O₆ [M+23]: 349.1622, found: 349.1624.


17. Di-tert-butyl 2-acetyl-5-methyl-2,3-dihydrofuran-2,4-dicarboxylate (2q). The title compound was prepared according to the general procedure and purified by

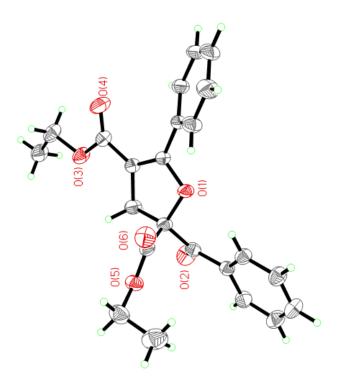
column chromatography to give a white solid, 65% yield. ¹H NMR (400 MHz, CDCl₃) δ 3.36 (d, *J* = 16.1 Hz, 1H), 3.13 (d, J = 15.4 Hz, 1H), 2.27 (s, 3H), 2.23 (s, 3H), 1.48 (d, J = 2.8 Hz, 18H); ¹³C NMR (101 MHz, CDCl₃) δ 201.22, 166.91, 164.48, 164.32, 103.67, 91.94, 84.05,

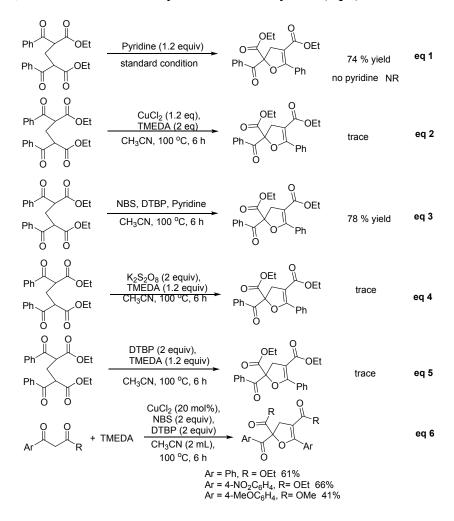
80.39, 35.76, 28.45, 27.89, 25.38, 13.92. HRMS (ESI) calcd. for $C_{17}\mathrm{H}_{26}$ Na O $_6$ [M+23]: 349.1622, found: 349.1615.


18. Diisopropyl 2-acetyl-5-methyl-2,3-dihydrofuran-2,4-dicarboxylate (2r). The

title compound was prepared according to the general procedure and purified by column chromatography to give a white solid, 71% yield. ¹H NMR (400 MHz, CDCl₃) δ 5.08 (ddt, *J* = 27.2, 12.4, 6.2 Hz, 2H), 3.39 (d, *J* = 15.6 Hz, 1H), 3.23 (d, *J* = 15.6 Hz, 1H), 2.28 (d, *J* = 5.2 Hz, 6H), 1.27 (dd,

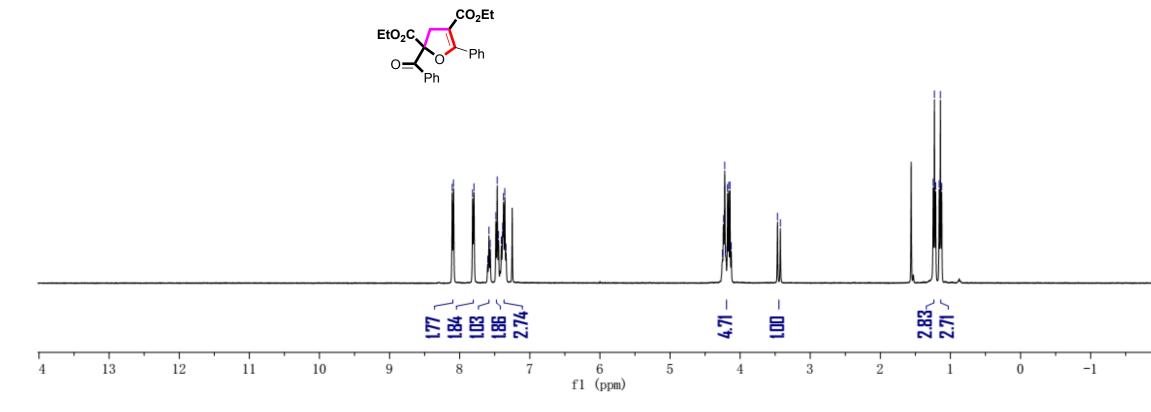
J = 10.4, 6.2 Hz, 12H); ¹³C NMR (101 MHz, CDCl₃) δ 200.94, 167.36, 165.17, 164.50, 102.70, 91.93, 70.86, 67.42, 35.72, 25.34, 22.14, 21.58, 13.93. HRMS (ESI) calcd. for C₁₅ H₂₂ Na O₆ [M+23]: 321.1309, found: 321.1311.

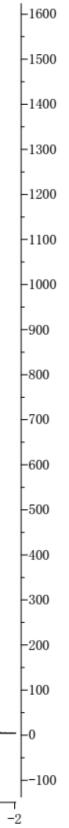

19. 1,1',1''-(5-methyl-2,3-dihydrofuran-2,2,4-triyl)tris(ethan-1-one) (**2s**). The title compound was prepared according to the general procedure and purified by column

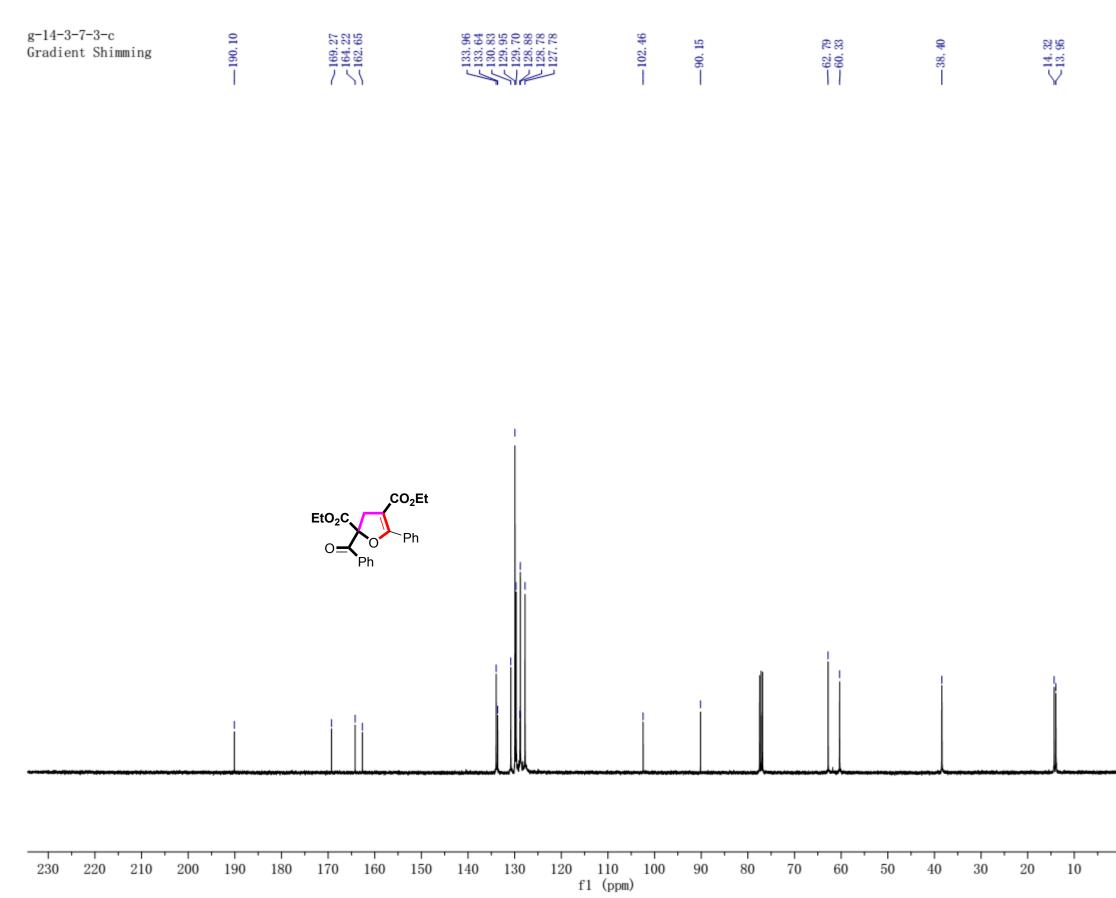

chromatography to give a white solid, 27% yield. ¹H NMR (400 MHz, CDCl3) δ 3.33 (s, 2H), 2.27 (t, *J* = 25.2 Hz, 12H); ¹³C NMR (101 MHz, CDCl₃) δ 201.66, 193.71, 164.88, 111.50, 109.99, 97.81, 36.07, 29.58, 25.47, 14.6. HRMS (ESI) calcd. for

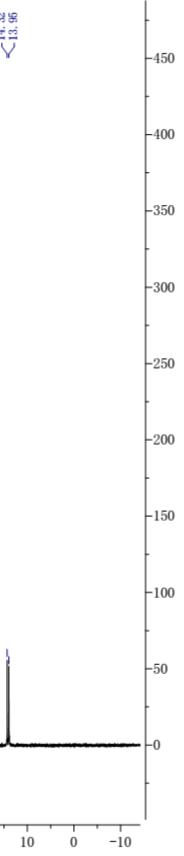
 $C_{11}H_{14}$ Na O₄ [M+23]: 233.0784, found: 233.0797.

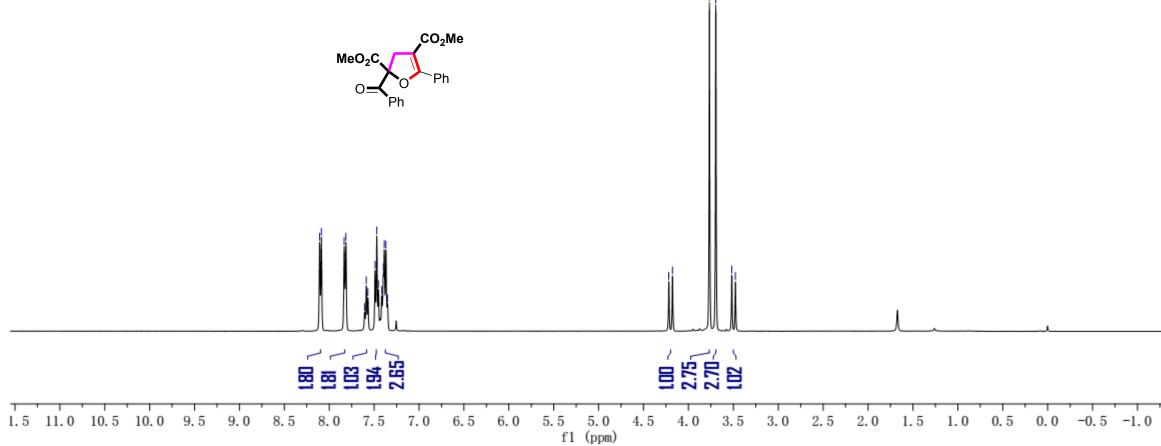
The X-ray of 2a

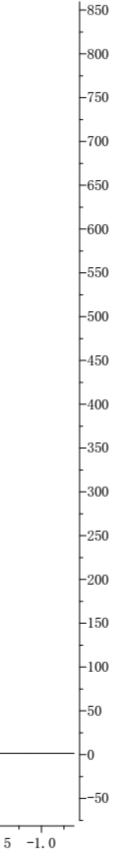


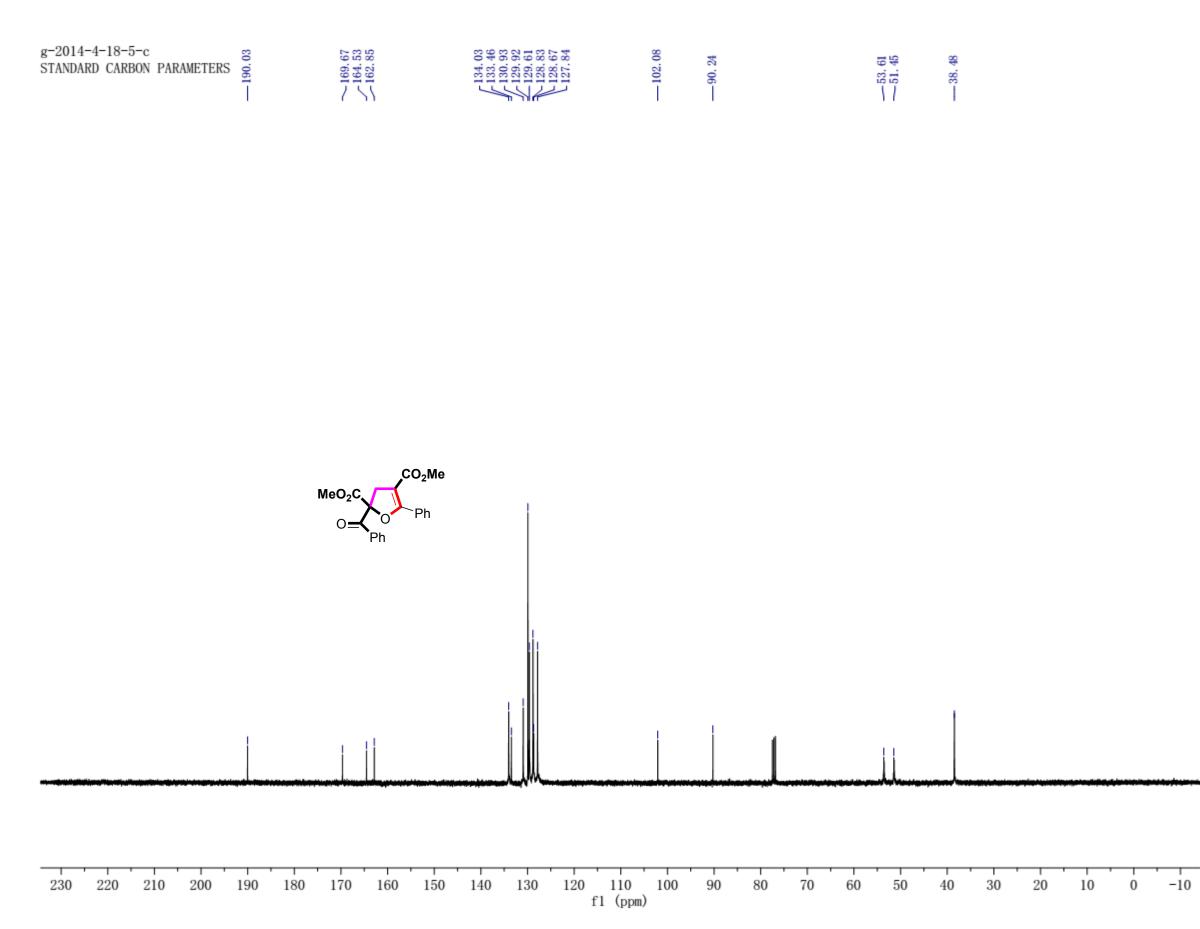

To study the reaction probably mechanism, we first employed methylene-bridged bis-1,3-dicarbonyl compounds as starting material, pyridine (2 equiv) instead of TMEDA was used under optical conditions, which afforded the target product in 74% yield (eq 1). CuCl₂ was used as promoter in the reaction without DTBP, we found there was trace of product exited (eq 2). When methylene-bridged bis-1,3-dicarbonyl compounds was used as starting material, NBS (2 eq) was used as halogen reagent in oxidant condition and pyridine as base, we found the reaction could also perform, which means the reaction might undergo a halogenation procedure (eq 3). In order to confirm the reaction undergo a carbocation process, the oxidant such $K_2S_2O_8$ and DTBP were used to oxidize the methylene-bridged bis-1,3-dicarbonyl compounds (eq 4 and 5). When CuCl₂ (20 mol %) instead stoichiometry copper, and NBS as additive were used, the reaction could carry on with middle yields (eq 6).

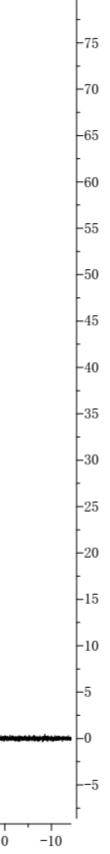


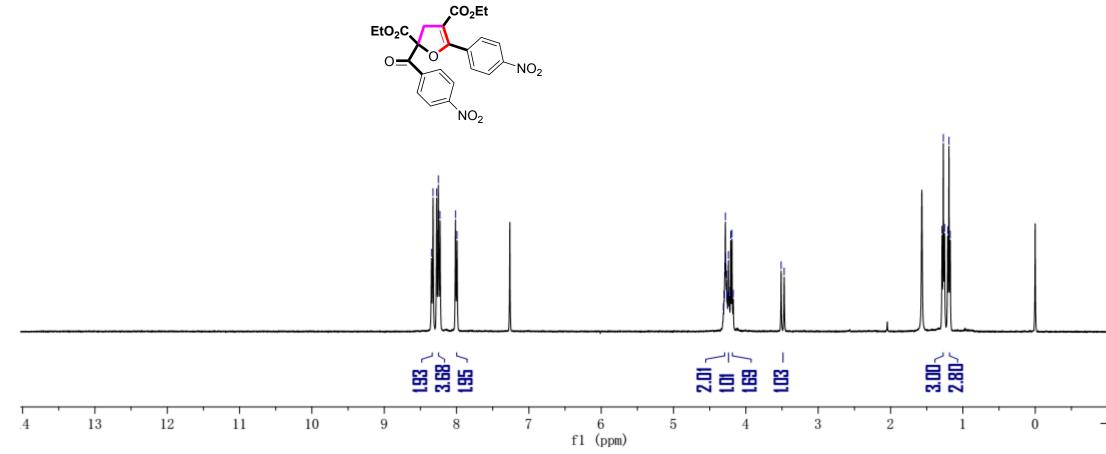

Copies of product ¹H NMR and ¹³C NMR

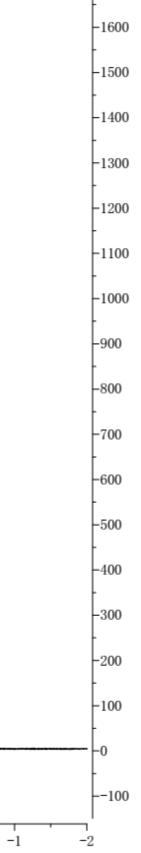


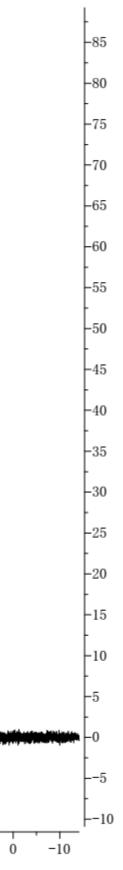




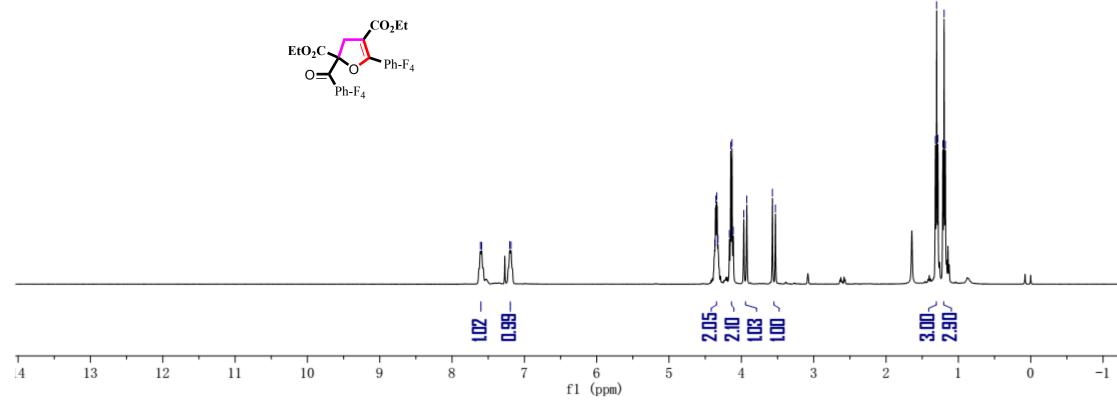


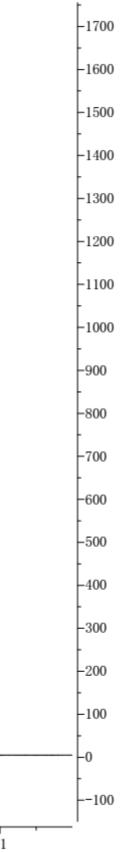

 $\overbrace{}^{4.22}_{4.18}$

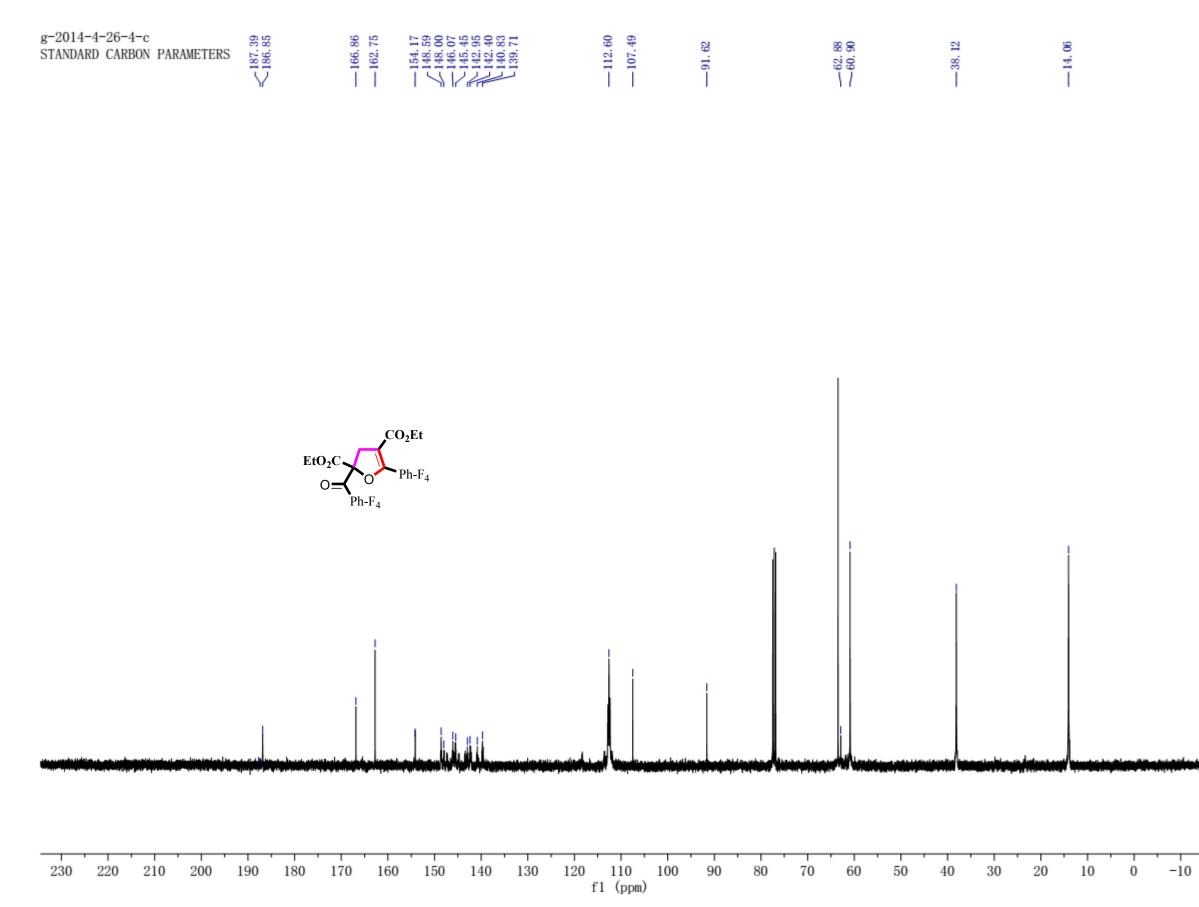


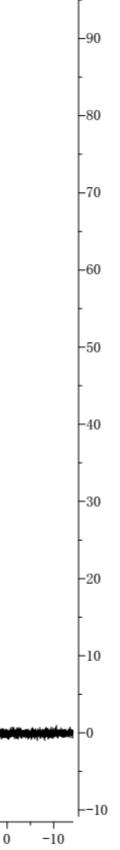


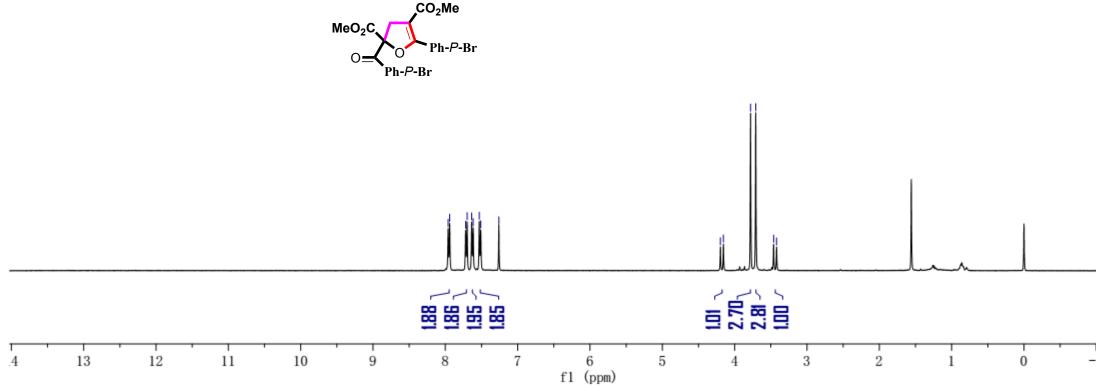
g-2014-4-18-8 STANDARD CARBON PARAMETERS	8.347 8.325 8.275 8.275 8.275 8.275 8.275 8.275 7.993	4 230 4 230 3 4 10 2 4 10 10 10 10 10 10 10 10 10 10 10 10 10 1	1288 1270 1253 1182 1175
---	---	---	--------------------------------------

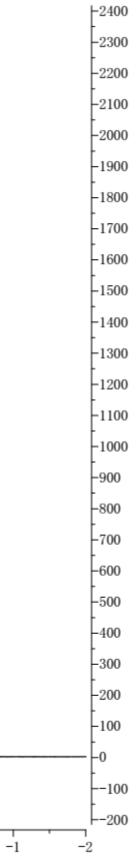


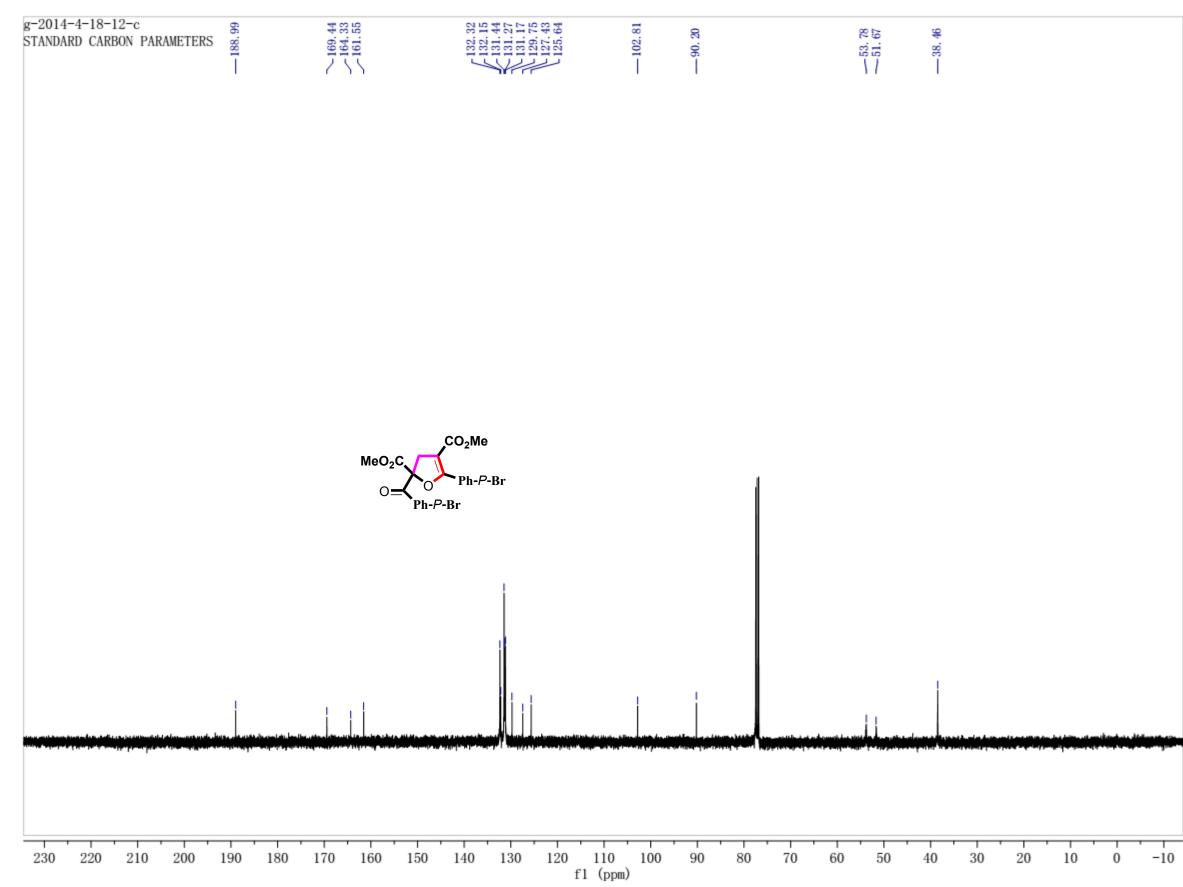

g-2014-4-18-8-c STANDARD CARBON PARAMETERS		168, 39 163, 37 159, 49	/ 150.88 / 149.00	 137.99 √134.48 √131.01 ×130.73 	< 124.05	— 105.70		63, 51 61, 02	8 8 	5	×14.03
	EtO ₂ C	CO ₂ Et									
		NO ₂	NO ₂								
und dass Bill setunde her stäft in den statetetetetetetetetetetetetetetetetetet	an a family and it with both star				J					an and the star star star with a state of the	
an totan ten û îse û de ferste de ferste fermeniken e		and and an a second				an a		antista kantista diserahilihi	n a tha na su an an an an		- Annal
230 220 210 200	190 180	170 160	150	140 130	0 120 11 f1 (j	.0 100 ppm)	90 80	70 60	50 40	30 20	10

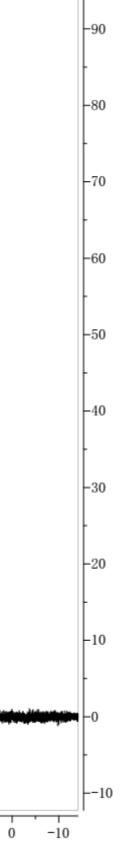


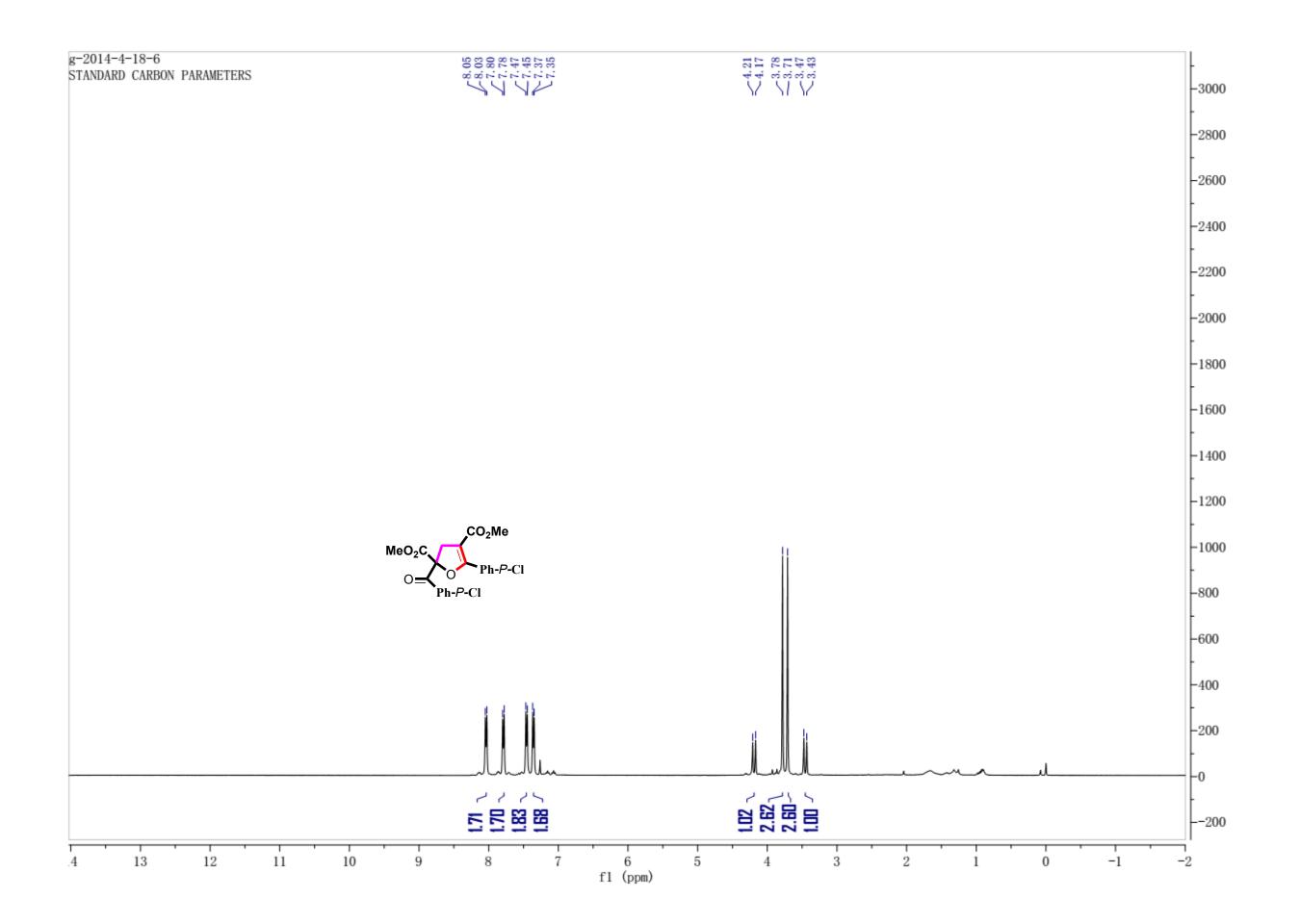

g-2014-4-26-4 STANDARD CARBON PARAMETERS

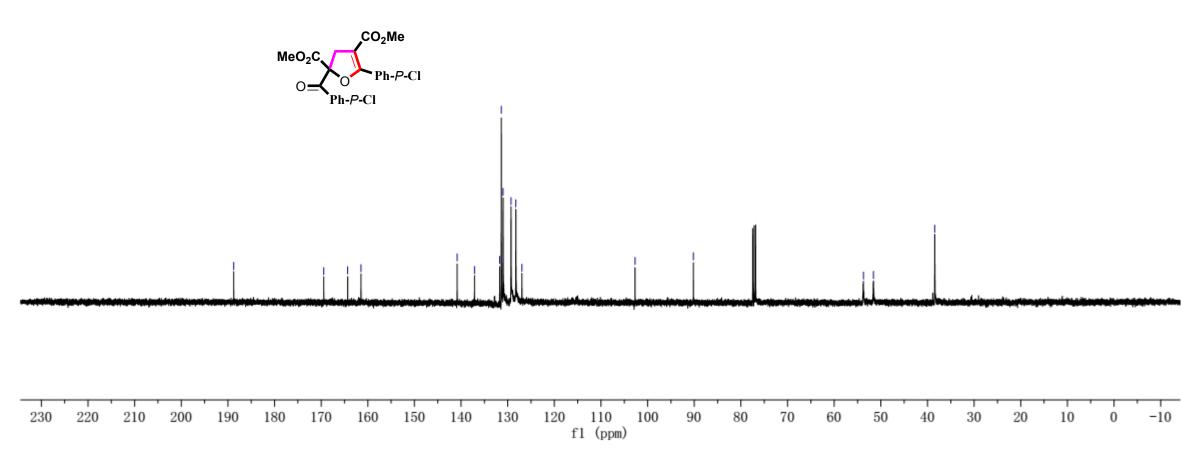


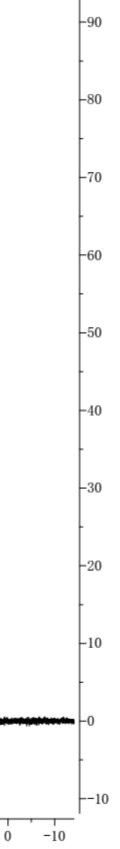


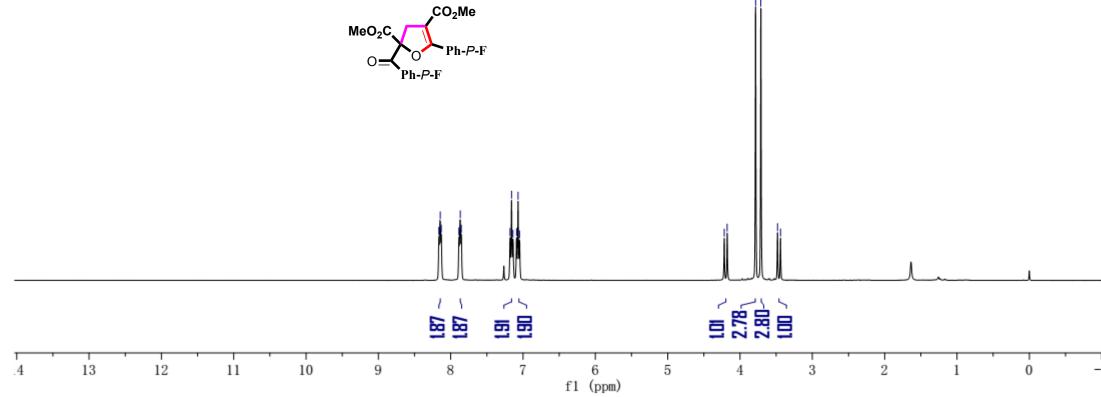

g-2014-4-18-12 STANDARD CARBON PARAMETERS

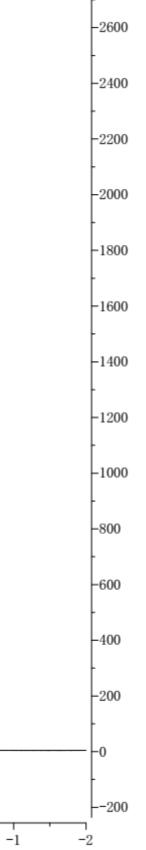

7.94 7.72 7.72 7.75 7.53 7.51 7.51 7.51 7.51

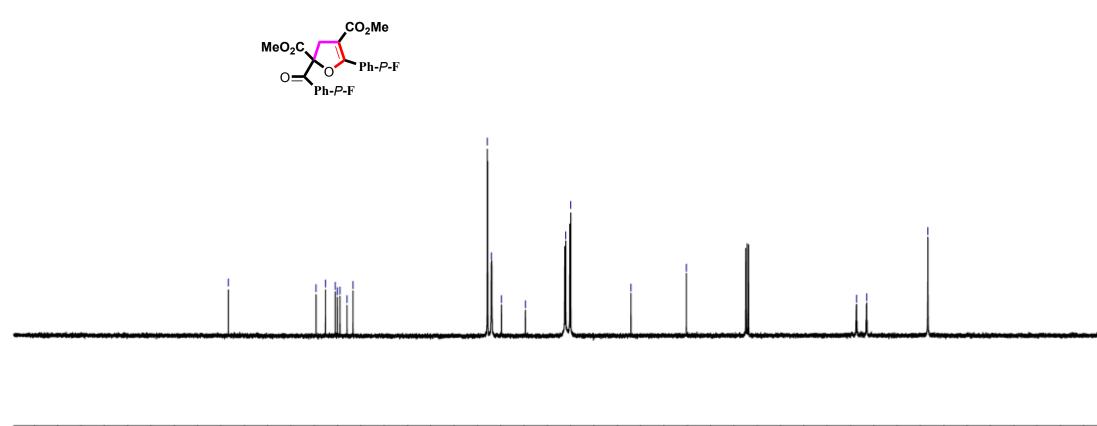

 $\bigwedge^{4.16}_{3.42} \, \bigwedge^{3.78}_{3.42} \, \bigwedge^{3.78}_{$



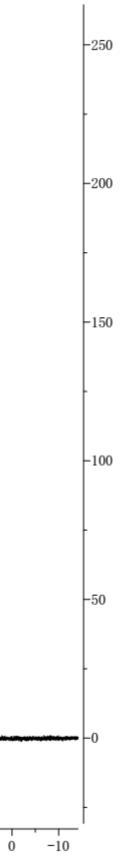


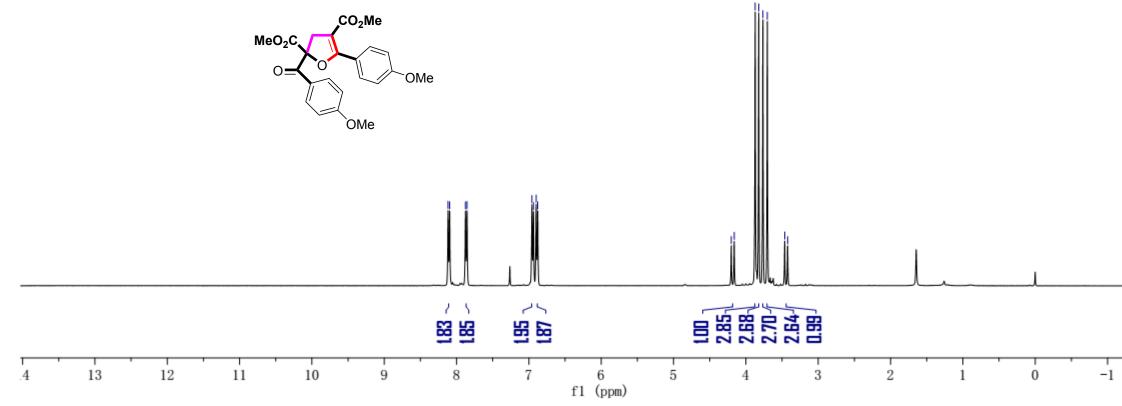

g-2014-4-18-6-c STANDARD CARBON PARAMETERS		\[\begin{bmatrix} \left{169.45} \] \[\left{164.33} \] \[\left{161.47} \] \[-140.85 -137.13 -137.13 -131.73 -131.38 -131.38 -130.99 -126.97 -126.97			
---	--	--	---	--	--	--

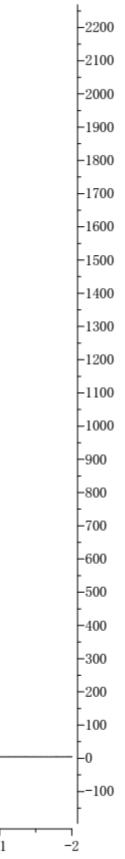



g-2014-4-18-3 STANDARD CARBON PARAMETERS

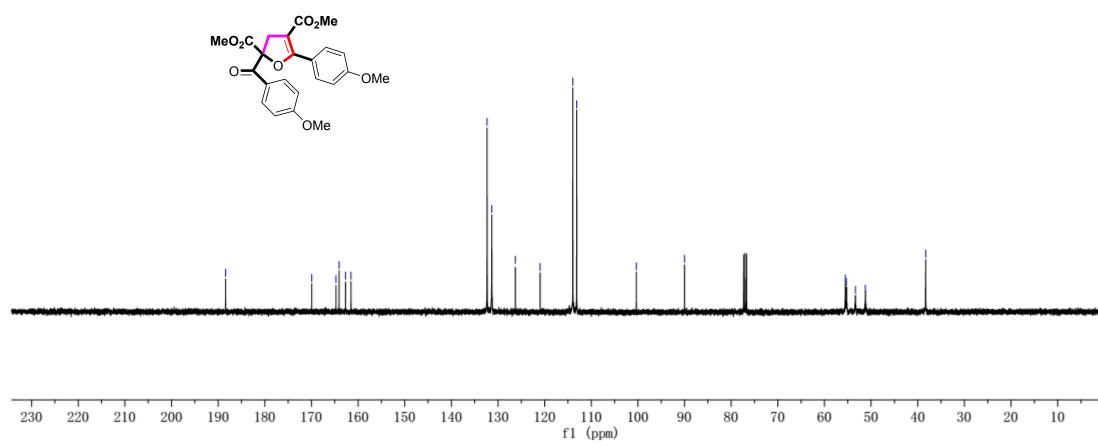
8,16 8,14 8,13 8,13 7,85 7,85 7,18 7,18 7,16 7,16 7,16 7,09 $\overbrace{}^{4.18}_{3.44}$

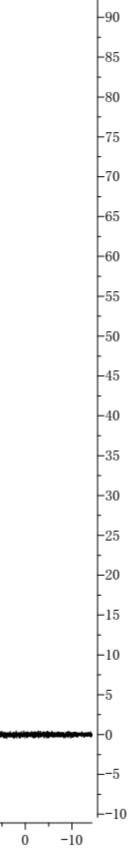


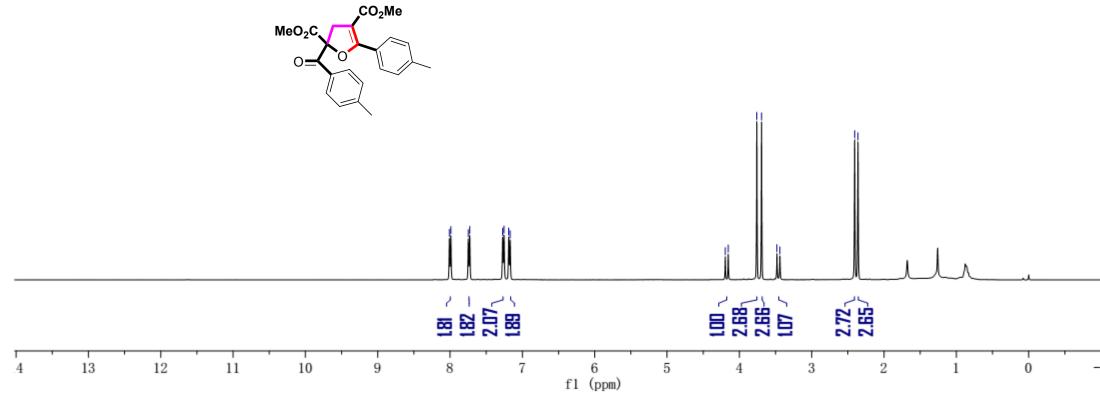

g-2014-4-18-3-c STANDARD CARBON PARAMETERS		$[67, 69] \\ [67, 58] \\ [65, 47] \\ [65, 02] \\ [64, 47] \\ [61, 69] $	132.88 131.99 121.69	~ 116.07 ~ 114.99				-53.69 -51.52		
---	--	---	----------------------------	--------------------------------	--	--	--	------------------	--	--

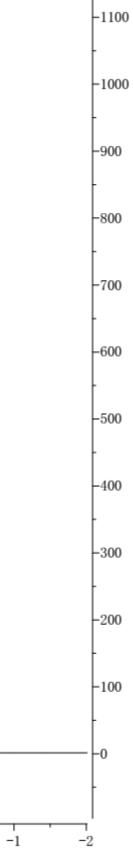


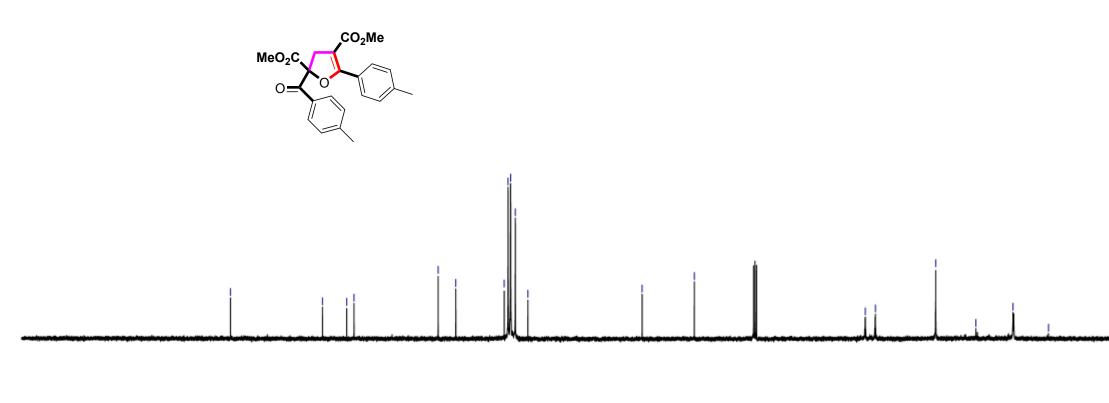
														'	·								
230	220	210	200	190	180	170	160	150	140	130		110 1 (ppm)		90	80	70	60	50	40	30	20	10	
											1	T (bbm)	/										



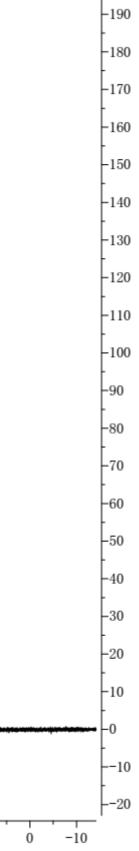

g-2014-4-18-14 STANDARD CARBON PARAMETERS	A 112 A	6.96 6.94 6.88 6.88	3.42 3.42 3.42 3.42 3.42 3.42 3.42
--	---	------------------------------	--

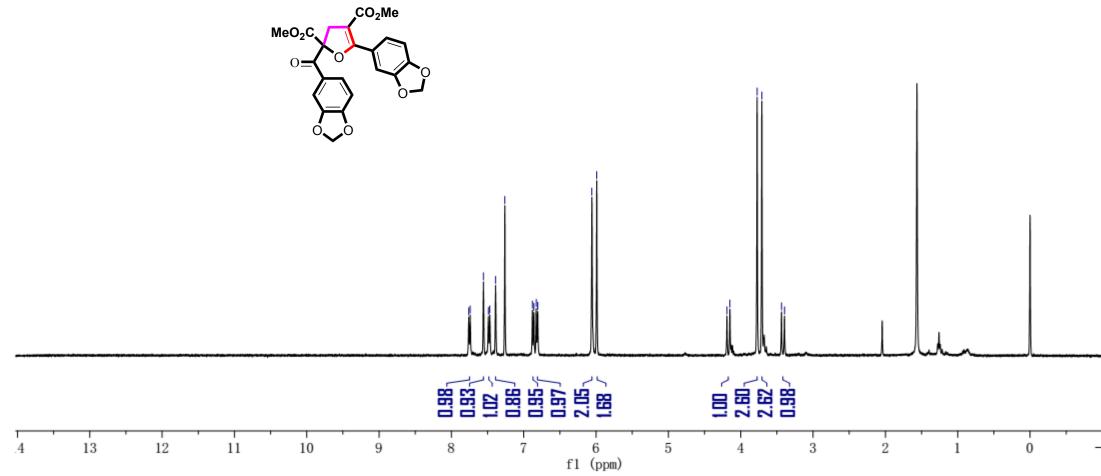

g-2014-4-18-14-c STANDARD CARBON PARAMETERS		$ \sum_{\substack{164.75\\164.75}} 164.75 \\ 164.08 \\ 161.63 \\ 161.53 $	31.26	< 113.97 < 113.13			28, 38 21, 28 39 29, 28 21, 28
--	--	---	-------	----------------------	--	--	--

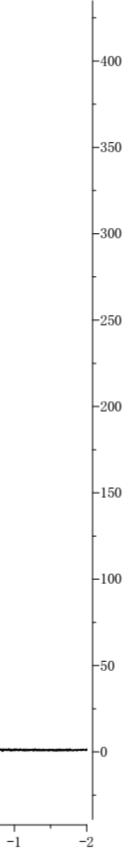



g-2014-4-26-3 STANDARD CARBON PARAMETERS

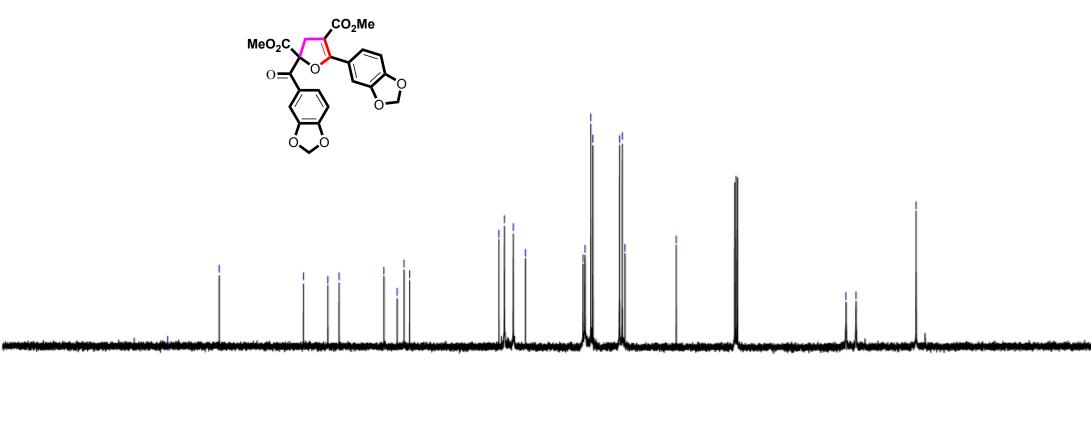
 $\sum_{\substack{7.175\\7.175}}^{8.01}$ $\bigwedge^{4.15}_{3.48}$ $<^{2.41}_{2.36}$



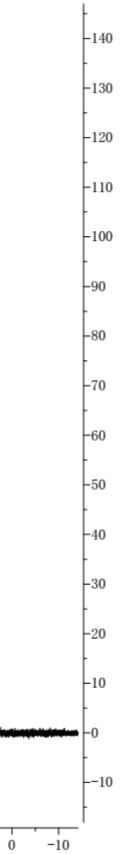

g-2014-4-26-3-c STANDARD CARBON PARAMETERS		∼ 169.90 √164.72		130.94 130.12 129.57 128.56 125.87									
---	--	---------------------	--	--	--	--	--	--	--	--	--	--	--

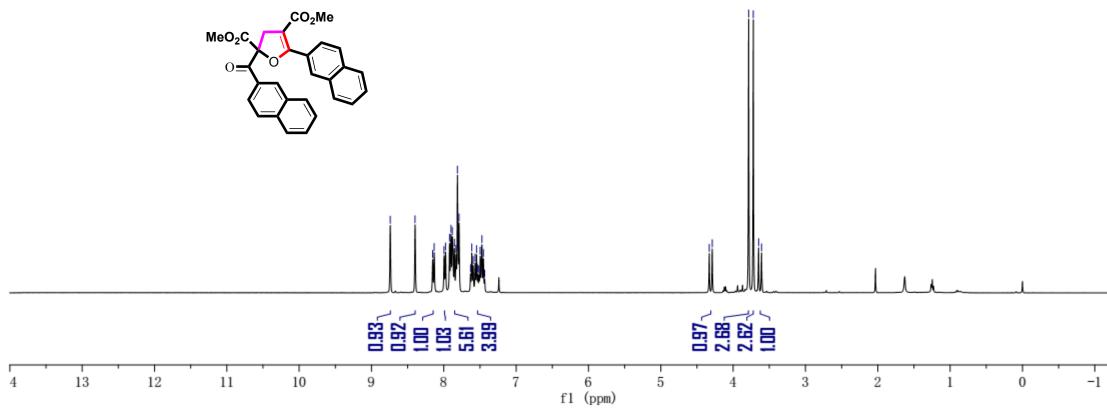


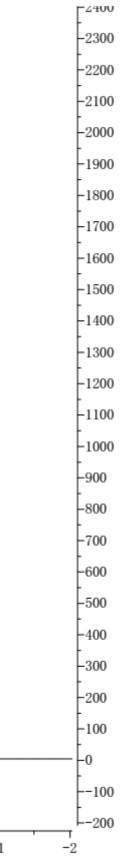
	· · · ·		· · · ·	· · · ·		· · · ·	'		'		· · · ·	· · · ·	· · · ·	· · ·	· · ·	· · ·	· · ·	· · ·	· · ·	· · · ·		-
230	220	210	200	190	180	170	160	150	140	130	110 1 (ppm)		90	80	70	60	50	40	30	20	10	

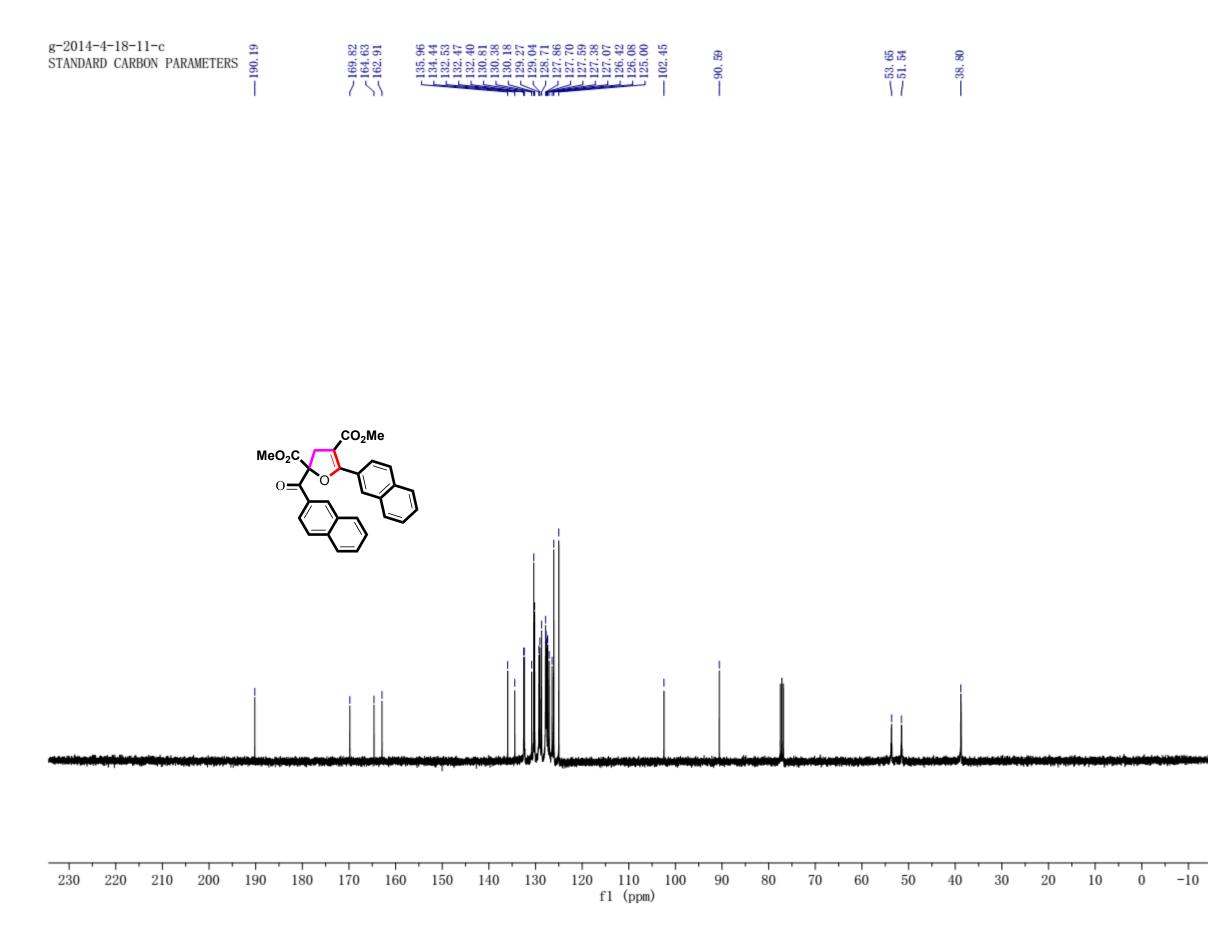


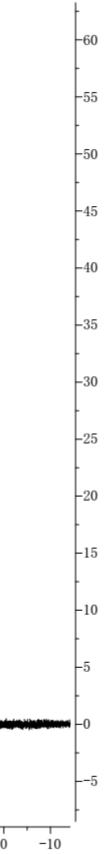
g-2014-4-18-2 STANDARD CARBON PARAMETERS	7. 76 7. 75 7. 74 7. 49 6. 88 6. 88 6. 88 6. 81	2,419 2,4119 2,311 2,4119 2,41

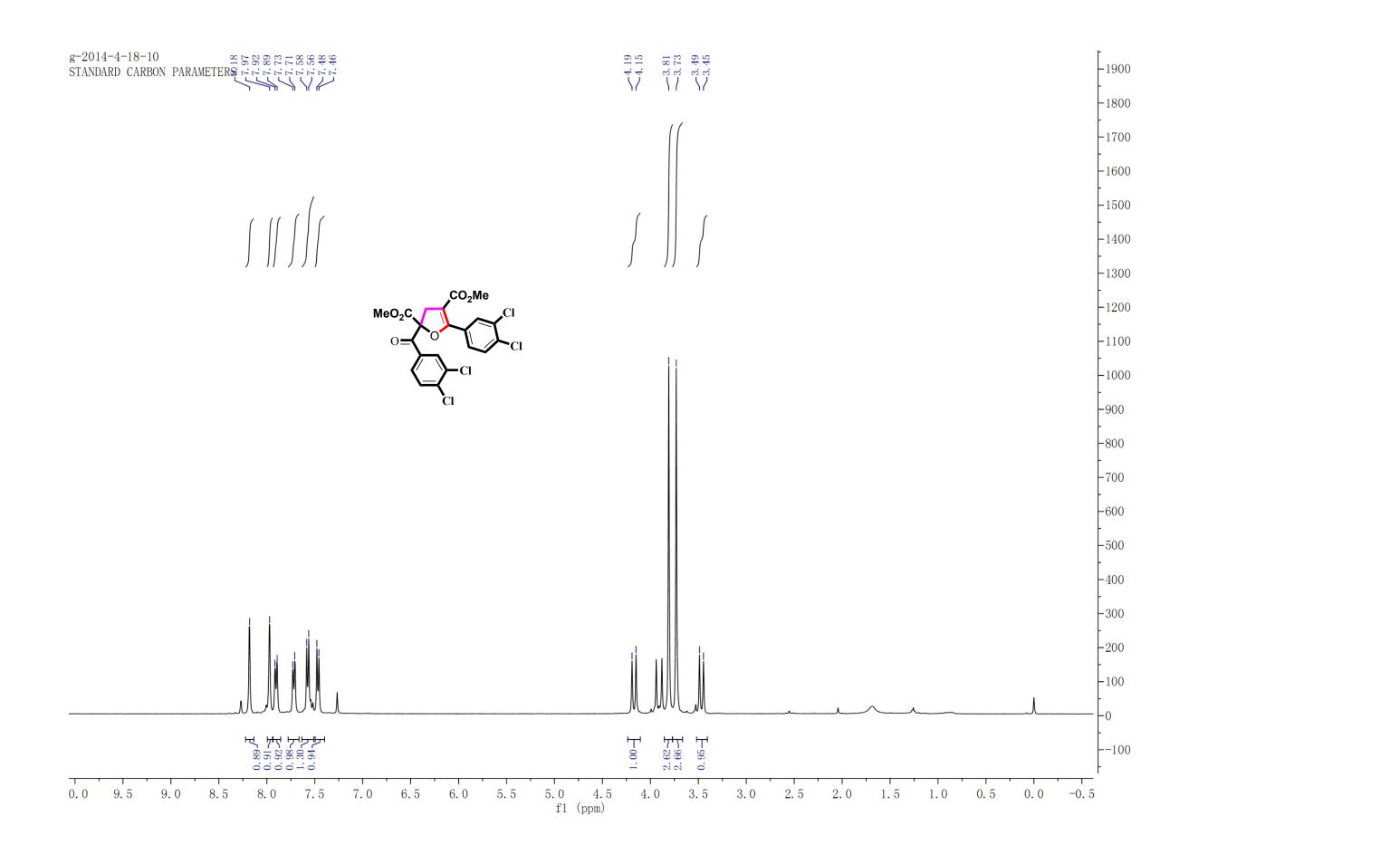


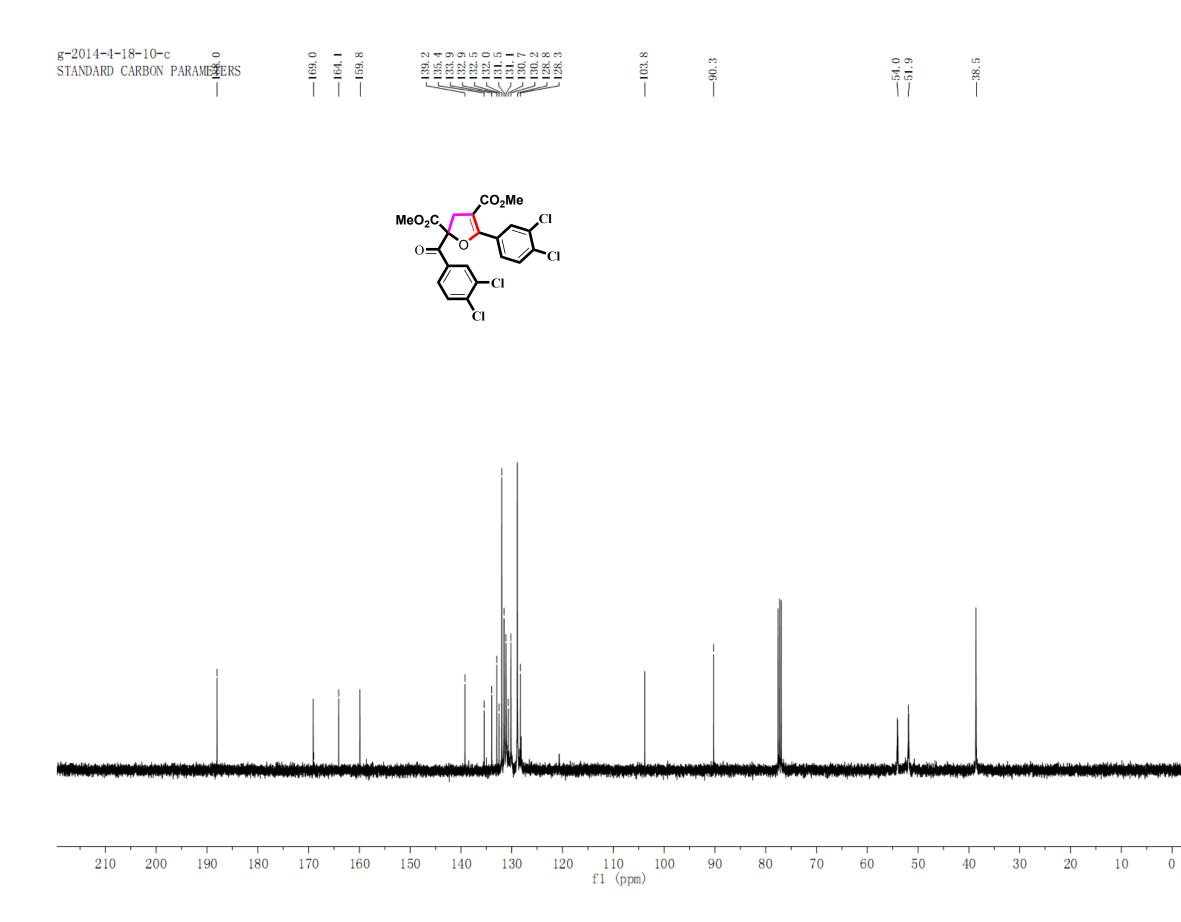


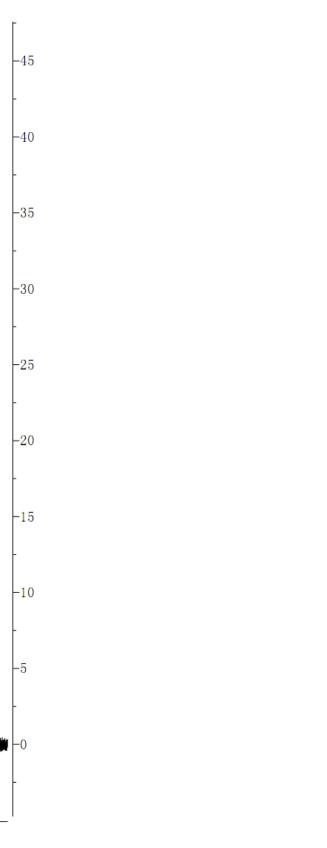

		' '	· ·		' '		' '				' '	' '		· ·	· I	· ·	· ·	· ·	· ·	· ·	· ·	· ·	
230	220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	
											f	1 (ppm))										

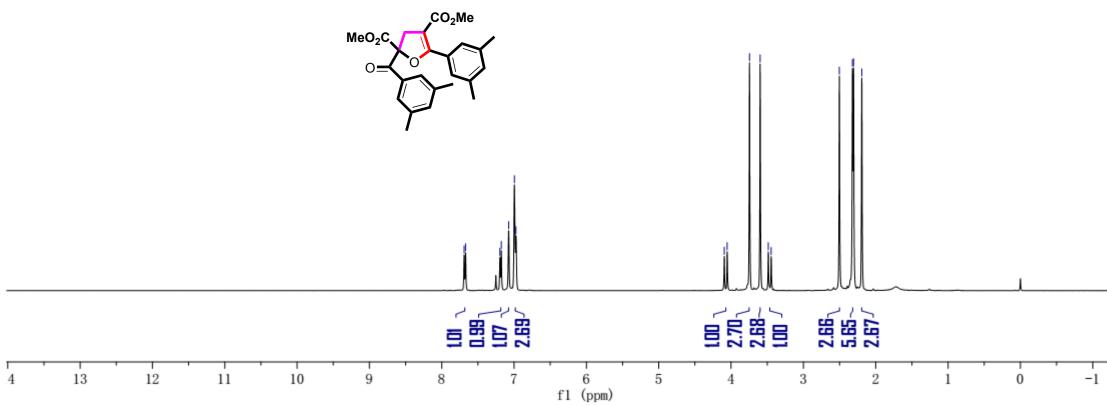


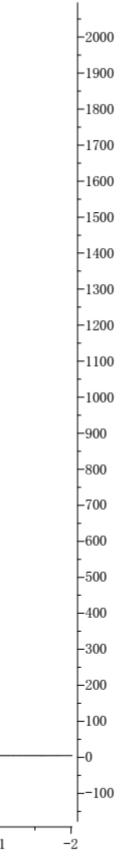

g-2014-4-18-11 STANDARD CARBON PARAMETERS

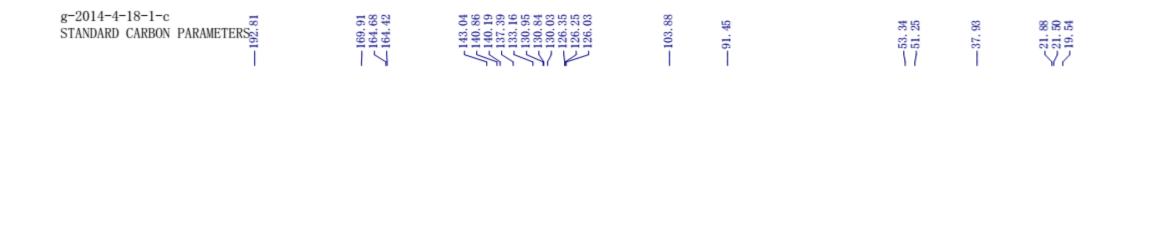

 $\overbrace{}^{4.33}_{4.29}$

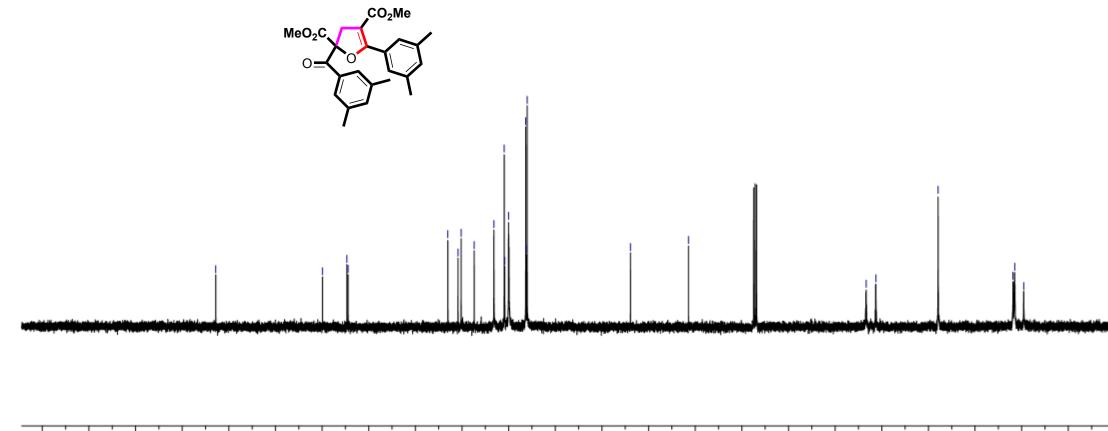


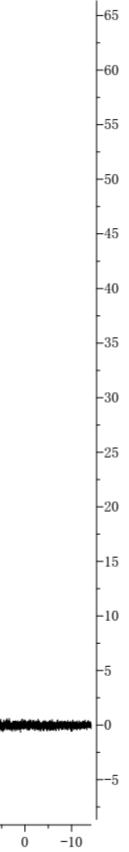


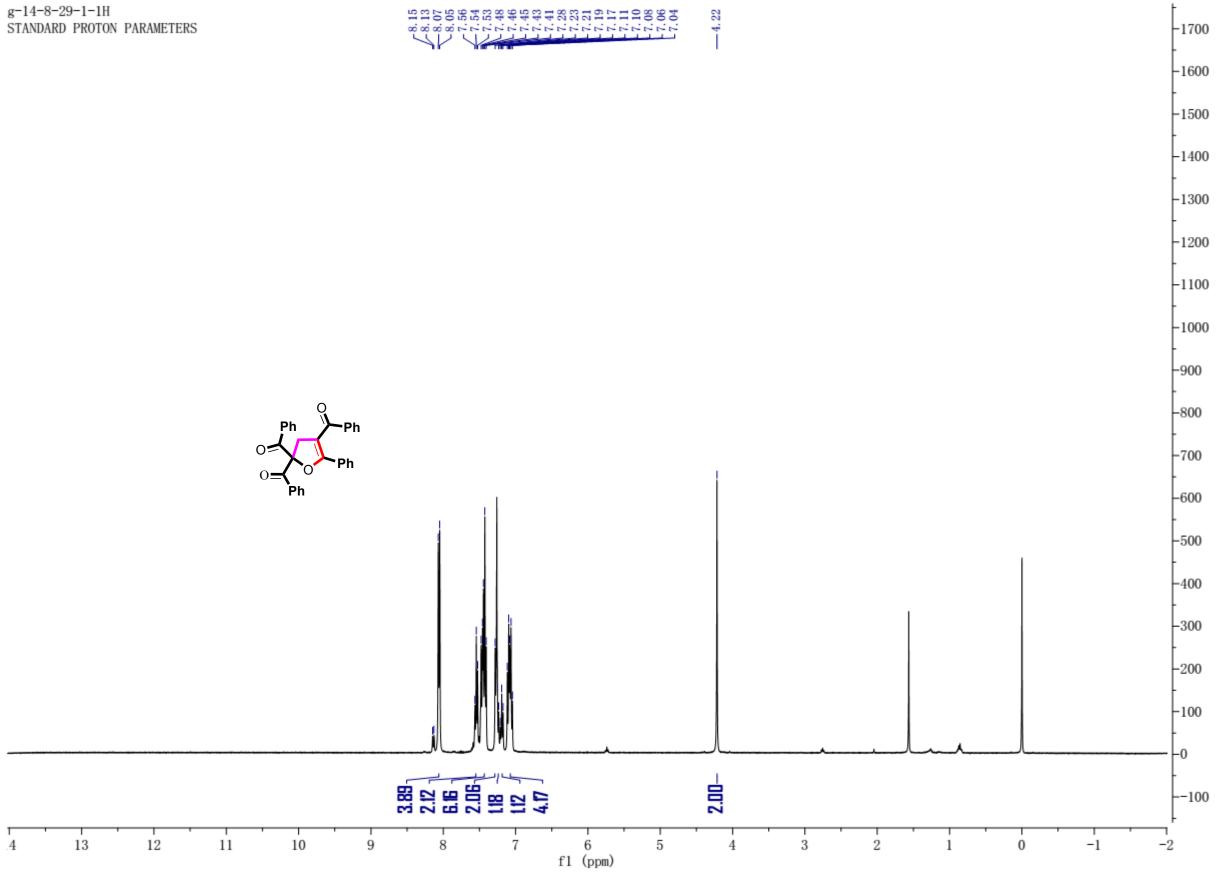


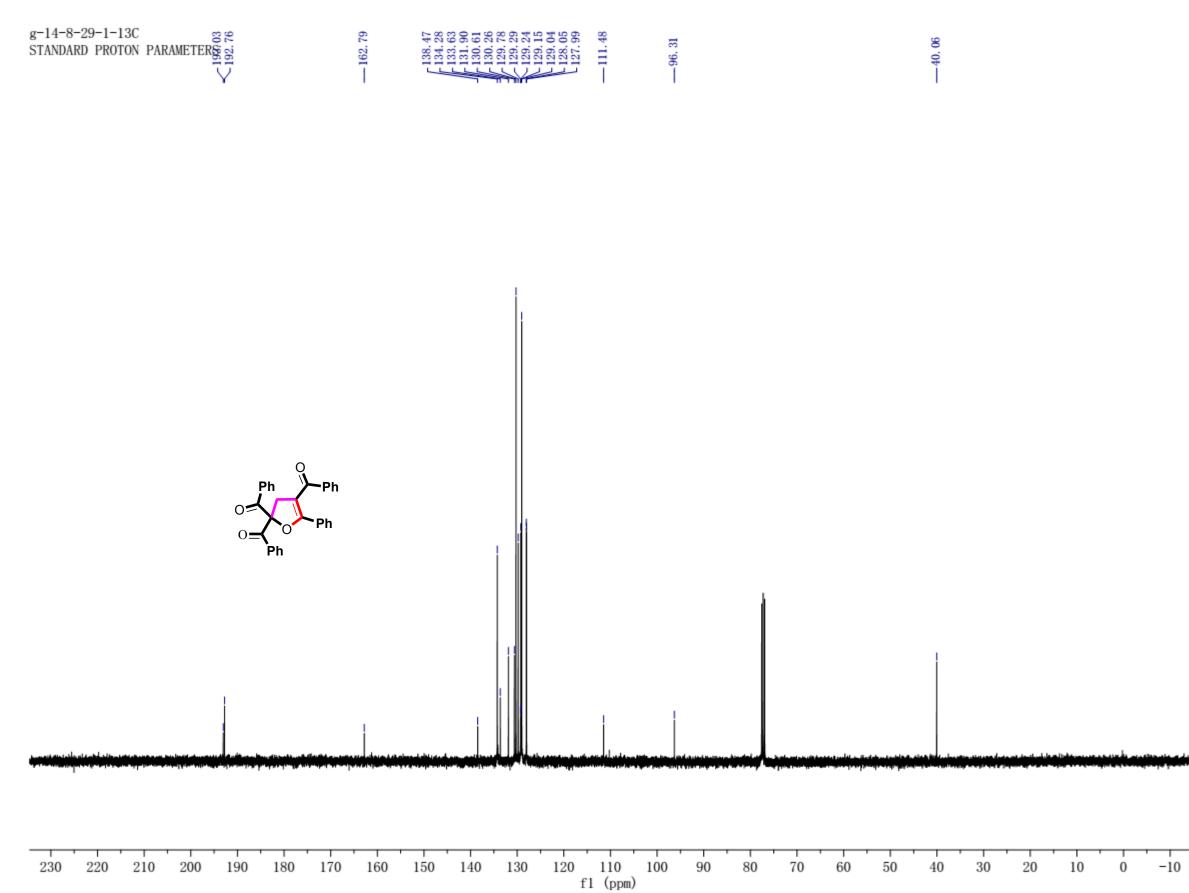


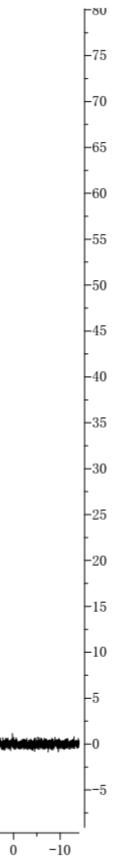

g-2014-4-18-1 STANDARD CARBON PARAMETERS

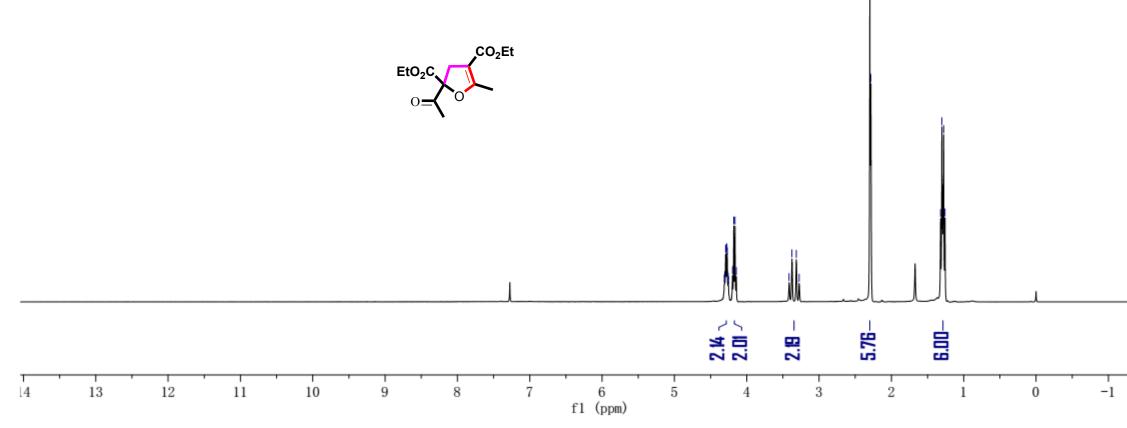


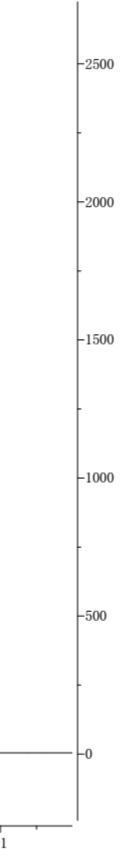


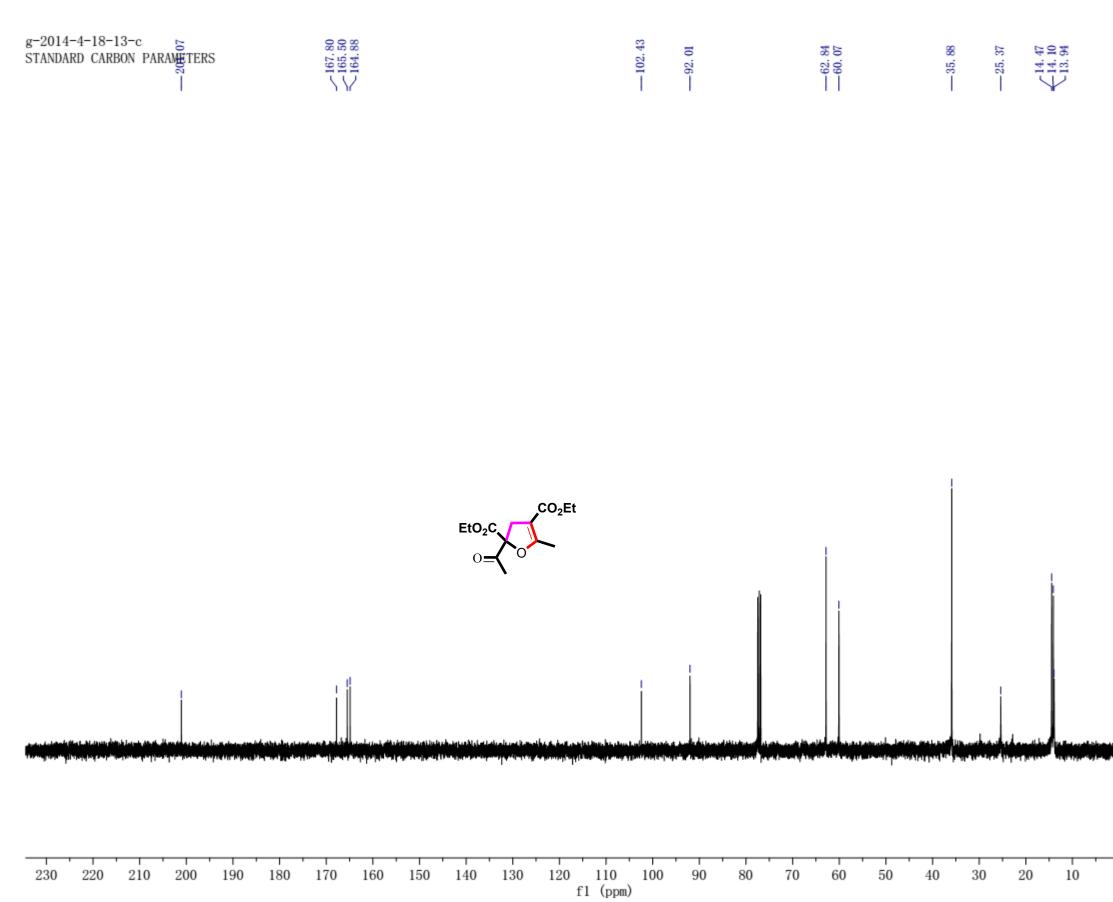


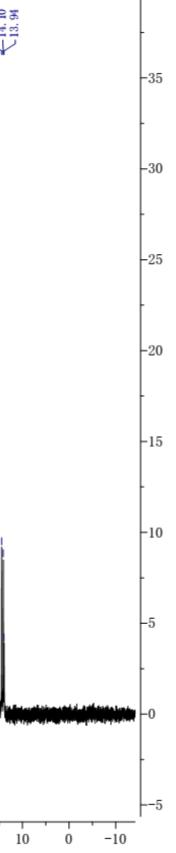


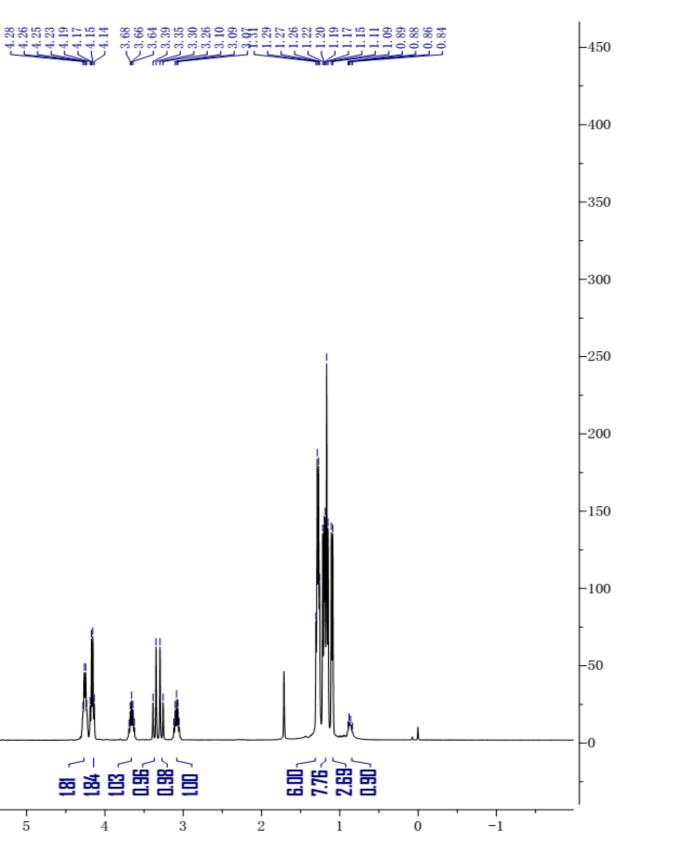

	· · ·		· · ·	· · · ·		, , , ,	· · · ·				· · ·	·	 · · ·			· · ·		· · ·	· · ·			
230	220	210	200	190	180	170	160	150	140	130		110 f1 (ppm)	90	80	70	60	50	40	30	20	10	

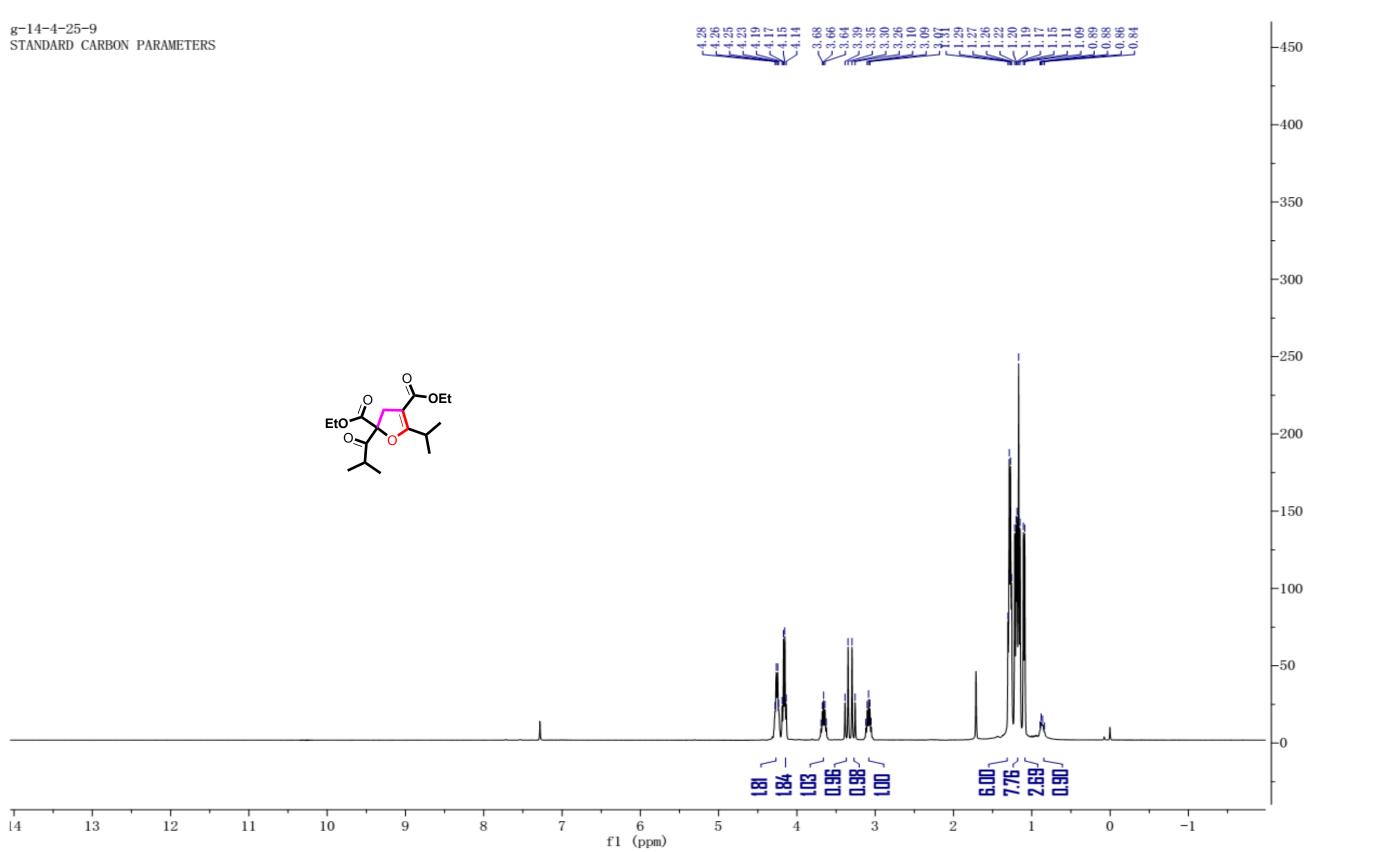


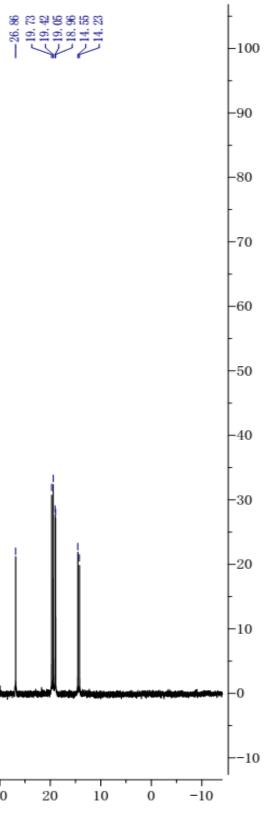


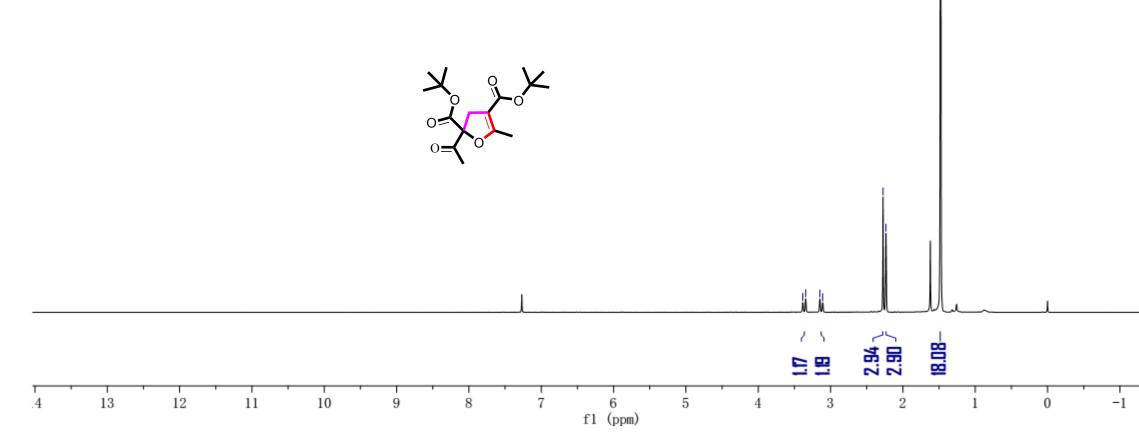


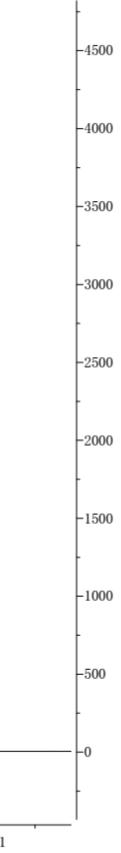


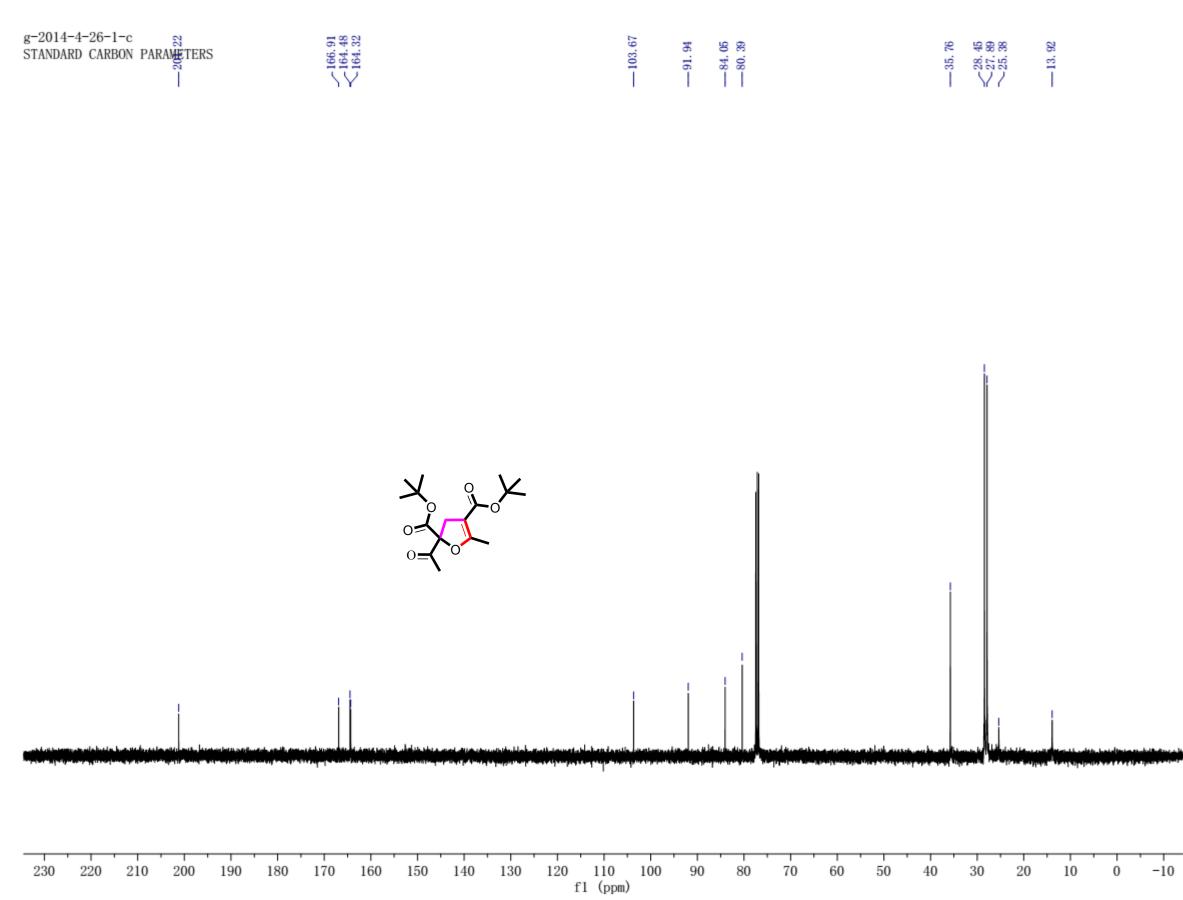

g-2014-4-18-13 STANDARD CARBON PARAMETERS	23338414 16 23338414 16 23338414 16 28338414 16 28338414 16 28556 2857676 28576 28576 28576 28576 28576 28576 28576 28576 2857	$<^{2.30}_{2.28}$	$ \overbrace{\begin{subarray}{c} 1.32\\ 1.28\\ 1.26\\ 1.26\\ \hline\end{subarray} $
--	---	-------------------	---

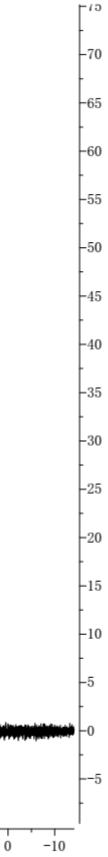




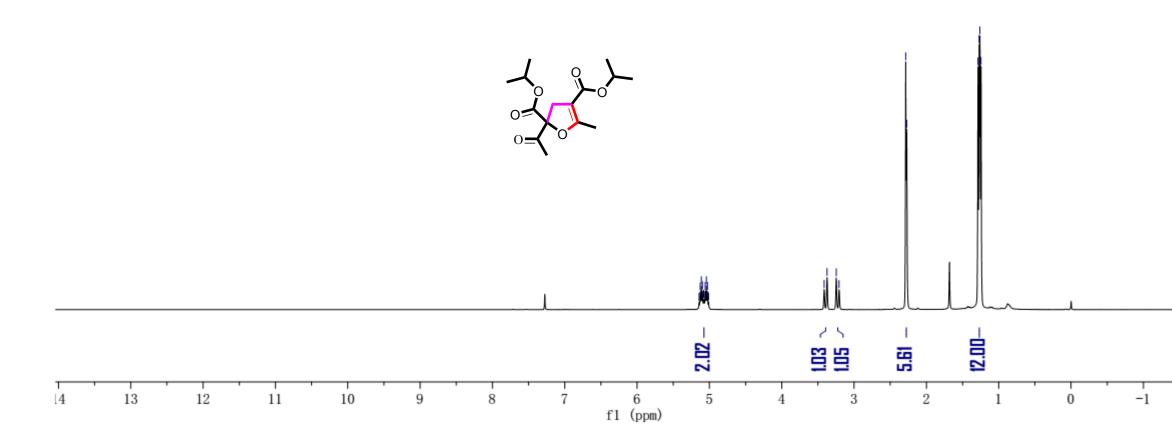


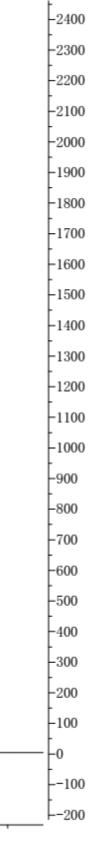

LULIN-13C-1 s Gradient Shimming	∼173.36 √164.95		 	36.73 36.73	26.86 19.73 19.95 14.55
		EtO			
		ŊĸĸĸĸĸŊġĊĸġġġĸĔġĔĬĸĔĸĊĸŦġĸĊĬĸĊĊŢġĸĊĸĸĸĊĸŦŢĬġĊĊġĊĸijĸġġŎ			

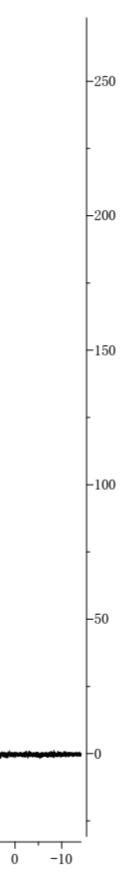

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 f1 (ppm)

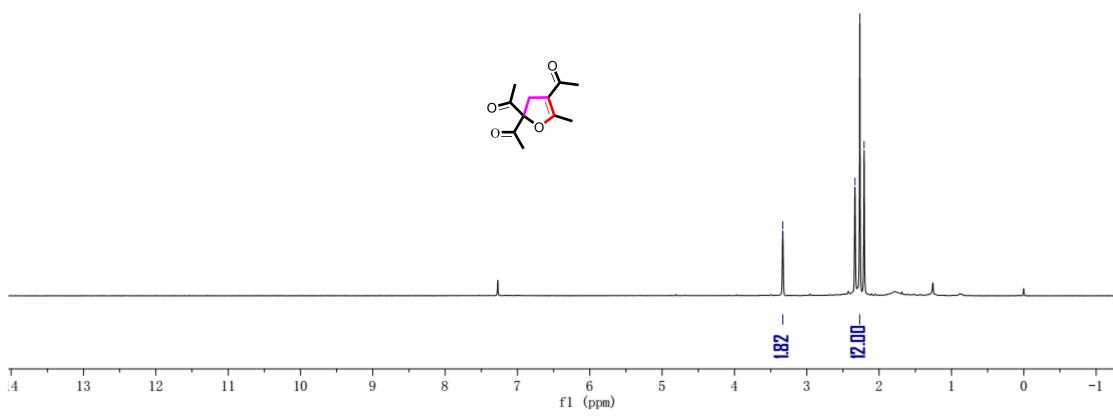


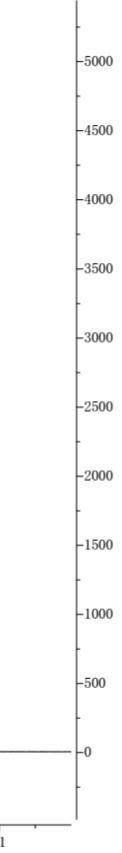
g-2014-4-26-1 STANDARD CARBON PARAMETERS		$\leq^{2.27}_{2.23}$	$<^{1.48}_{1.48}$
---	--	----------------------	-------------------

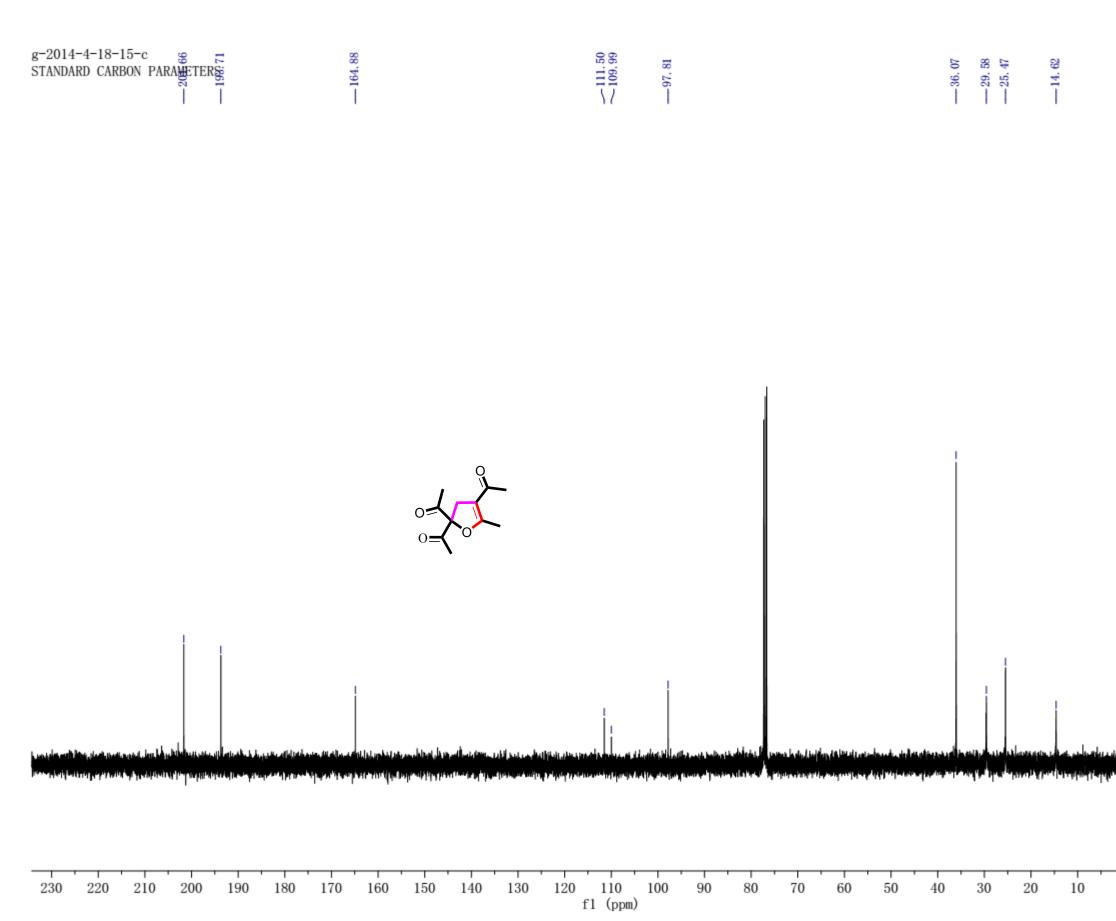





g-2014-4-26-2 STANDARD CARBON PARAMETERS	5.01 5.01 5.01 5.01 5.01 5.01 5.01 5.01	2.41 2.37 3.25 3.21	$<_{2.27}^{2.29}$	$\underbrace{ \underbrace{ 1.29}_{ 1.27} }_{ 1.24}$
---	--	------------------------------	-------------------	---


g-2014-4-26-2-c STANDARD CARBON PARAMETERS	167.36 166.36 164.50		 70. 86 67. 42	-35.72 -25.34 -13.93 -13.93
		tefelfen med voer med voer Tijde jugten bye verster oof verdier stereten de		


		'								'	 '	'	'	'	' '					' '	
230	220	210	200	190	180	170	160	150	140	130	110 1 (ppm)	90	80	70	60	50	40	30	20	10	



g-2014-4-18-15 STANDARD CARBON PARAMETERS

