Supporting Information

Concise Total Synthesis of (\pm)-Aspidospermidine

Haichen Ma, ${ }^{\dagger}$ Xingang Xie, ${ }^{\dagger}$ Peng Jing, ${ }^{\dagger}$ Weiwei Zhang, ${ }^{\dagger}$ Xuegong She ${ }^{*},{ }^{\dagger},{ }^{\dagger}$${ }^{\dagger}$ 'State Key Laboratory of Applied Organic Chemistry, College of Chemistry andChemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, P. R. China${ }^{*}$ Collaborative Innovation Center of Chemical Science and Engineering Tianjin (P.R.China)
Email: shexg@lzu.edu.cn
Table of Contents
General Information. 2
Experimental Procedures 3-7
Copies of the Related NMR Spectra 8-24

Materials and Methods

Solvents were purified and dried by standard methods prior to use. All commercially available reagents were used without further purification unless otherwise noted. Oxygen- and moisture-sensitive reactions were carried out under argon atmosphere.

Column chromatography was generally performed on silica gel (200-300 mesh) and reactions were monitored by thin layer chromatography (TLC) using silica gel GF254 plates with UV light to visualize the course of reaction. Melting points were determined with a digital Koffer apparatus and were uncorrected. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data were recorded on a 400 MHz instrument using CDCl_{3} as solvent at room temperature. The chemical shifts (δ) are reported in ppm and coupling constants (J) in Hz. High-resolution mass spectra (HRMS) were obtained on a FT-ICR spectrometer.

Compound 8. To a stirred solution of $7(5.50 \mathrm{~g}, 20 \mathrm{mmol})$ in THF was added LDA ($10 \mathrm{~mL}, 20 \mathrm{mmol}$) dropwise at $-78{ }^{\circ} \mathrm{C}$. After 45 min , the ethyl iodide ($3.74 \mathrm{~g}, 24 \mathrm{mmol}$) was added to the mixture and the reaction mixture was stirred for 30 min at the same temperature. Then it was warmed to room temperature and stirred overnight. The reaction was quenched by slow additional of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ aqueous solution and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL} \times 3)$. The combined organic extracts were washed with brine (50 mL), dried over anhydrous NaSO_{4} and concentrated on vacuum. The obtained residue was purified by column chromatography (silica gel, hexane/EtOAc $5: 1$) to give pure product as a white solid ($5.82 \mathrm{~g} \mathrm{96} \mathrm{\%}$ yield.) mp $133^{\circ} \mathrm{C}$.

IR (KBr) $v_{\max }$ 3058, 3033, 2962, 2932, 2871, 2245, 1643, 1611, 1539, 1461, 1397, 1152, 1077, 910, 732, $700 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 1.00(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.54(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~m}, 2 \mathrm{H})$, 2.81 (m, 2H), 5.22 (s, 2H), 6.99 (t, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~m}, 4 \mathrm{H}), 8.31(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}$);
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 11.7,21.0,22.3,27.6,46.7,47.6,109.5,112.5,121.5,122.4,122.9$, 125.1, 126.0, 127.7, 128.9, 136.0, 137.2, 150.9, 196.0;

HRMS (ESIMS) Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}[\mathrm{M}+\mathrm{Na}]^{+}$326.1515, found 326.1524

Compound 9. To a solution of ketone 8 ($1.56 \mathrm{~g}, 5 \mathrm{mmol}$), which protected by argon, in anhydrous THF $(100 \mathrm{~mL}) / \mathrm{t}-\mathrm{BuOH}(10 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added t -BuOK ($1.12 \mathrm{~g}, 10 \mathrm{mmol}$, and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min . methyl acrylate ($3.6 \mathrm{~mL}, 40 \mathrm{mmol}$) was added to the reaction and the resulting mixture was stirred at $-20^{\circ} \mathrm{C}$ for 30 min and at room temperature for 12 h . The reaction mixture was quenched by addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ at $0^{\circ} \mathrm{C}$. The resultant residue was taken
up in water (50 mL) and the aqueous mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL} \times 3)$. The combined organic extracts were washed with brine (40 mL) and dried over NaSO_{4} and the solvent was removed under vacuum. The residue was purified by column chromatography (silica gel, hexane/EtOAc $5: 1$) to give pure product 9 ($1.52 \mathrm{~g}, 78 \%$ yield) as a yellow solid.

IR (KBr) $v_{\max }$ 3060, 3031, 2947, 2881, 2250, 1735, 1641, 1542, 1460, 1437, 1360, 1300, 1199, 1176, 1070, 912, 841, 732, 700, $648 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 0.91(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.68(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~m}, 3 \mathrm{H})$, 2.37 (m, 2H), 2.91 (m, 2H), 3.63 (s, 3H), 5.30 (s, 2H), 7.03 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 7.26 (m, 6H), 8.30 (d, J $=7.6 \mathrm{~Hz}, 1 \mathrm{H}$);
${ }^{13} \mathbf{C ~ N M R ~}^{\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): ~} \delta 8.4,19.1,27.2,29.2,31.4,46.9,47.2,51.5,109.6,112.0,121.7$, 122.6, 123.1, 125.4, 126.0, 127.9, 129.0, 136.0, 137.4, 149.8, 174.1, 197.1;

HRMS (ESIMS) Calcd for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$412.1883, found 412.1885.

Compound 5. To a solution of 9 (1.52 g 3.81 mmol) was added $\mathrm{CH}_{3} \mathrm{CN}$. Monoethanol Amine (2.31 g 38 mmol) was added to the reaction mixture and the resulting solution was stirred and reflux at $78^{\circ} \mathrm{C}$ for 10 h . A trace of Sodium ethoxide was added in the system. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(60 \mathrm{~mL} \times 3)$. The combined organic extracts were washed with brine (50 mL) and dried over NaSO_{4} and the solvent was removed under vacuum. The mixture residue was purified by column chromatography (silica gel, hexane/EtOAc 2:1) to give the pure product $5(1.38 \mathrm{~g} 90 \%$ yield) as yellow mucous. mp $155{ }^{\circ} \mathrm{C}$.

IR (KBr) $v_{\max }$ 3317, 3060, 2932, 2878, 1725, 1637, 1540, 1459, 1439, 1359, 1196, 1137, 1069, 935, 838, 735, 700, 659, $617 \mathrm{~cm}^{-1}$.
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 0.87(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 1 \mathrm{H}), 1.62(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{~m}, 1 \mathrm{H})$, 2.07 (m, 3H), 2.22 (m, 2H), 2.87 (m, 2H), 3.37 (t, $J=5.0 \mathrm{~Hz}, 2 \mathrm{H}$), 3.68 (t, $J=4.8 \mathrm{~Hz}, 2 \mathrm{H}$), 5.24 (s, $2 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~m}, 6 \mathrm{H}), 8.23(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 8.4,19.0,27.6,30.0,31.0,31.6,42.4,46.8,47.5,61.9,109.7,111.8$, 121.4, 122.6, 123.1, 125.2, 126.0, 127.8, 129.0, 135.7, 137.4, 150.6, 174.5, 198.2;

HRMS (ESIMS) Calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$441.2149, found 4441.2153.

Compound 3. To a stirred solution of $\mathbf{5}(0.44 \mathrm{~g} 1.04 \mathrm{mmol})$ in THF was added LAH (0.12 g 3.13 mmol) drop wise at $-20^{\circ} \mathrm{C}$. Then assembling a drying tube at the flask and stirring for 30 min . The reaction was quenched by water and then adjusted by 2 N HCl to attain the target of $\mathrm{PH}(2 \sim 3)$. The aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL} \times 2)$. The combined organic extracts were washed with brine $(30 \mathrm{~mL} \times 2)$ and dried over NaSO_{4}. The residue was purified by column chromatography (silica gel, EtOAc) to give pure product 3. ($0.40 \mathrm{mg} 94 \%$ yield) $\mathrm{mp} 200^{\circ} \mathrm{C}$;

IR (KBr) $v_{\max } 3327,3055,2938,2878,1705,1631,1612,1463,1427,1357,1302,1266,1190$, 1051, 1029, 736, $698 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 0.85(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~m}, 2 \mathrm{H}), 1.65(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{~m}, 1 \mathrm{H})$, 2.07 (m, 1H), $2.50(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{~m}, 1 \mathrm{H}), 2.73(\mathrm{~m}, 1 \mathrm{H}), 3.31(\mathrm{~m}, 1 \mathrm{H}), 3.55(\mathrm{~m}, 1 \mathrm{H}), 3.63(\mathrm{~m}, 1 \mathrm{H})$, $3.74(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~m}, 2 \mathrm{H}), 7.24(\mathrm{~m}, 4 \mathrm{H}), 7.52(\mathrm{~m}$, 2H);
${ }^{13} \mathbf{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 8.0,19.3,26.2,28.1,29.5,29.6,36.9,46.4,47.9,58.9,63.7$, 106.7, 109.6, 117.6, 120.1, 121.6, 125.7, 127.5, 127.9, 128.8, 137.1, 137.3, 174.4;

HRMS (ESIMS) Calcd for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$403.2380, found 403.2384.

Compound 2. Freshed cut $\mathrm{Na}(229 \mathrm{mg}, 9.96 \mathrm{mmol})$ was added to liquid ammonia (20 mL) in a 100 ml two-necked flask cooled to $-78^{\circ} \mathrm{C}$. After 5 min , a solution of t-BuOH (0.5 mL) in THF (5 mL) was added to the blue ammonia solution, followed by a solution of amide 3 ($200 \mathrm{mg}, 0.50 \mathrm{mmol}$) in THF (5 mL). The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 30 min at which the blue color had disappeared. The reaction mixture then was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and ammonia was allowed to evaporate by replacing the cooling bath with a water bath. The mixture solution was
extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 3)$. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ flash column chromatography (EtOAc) of the crude residue yielded 155mg (85.2\%) of amine 2 as a colorless solid. IR (KBr) $v_{\max } 3262,3057,2940,2876,1610,1462,1419,1330,1304,1263,1121,1048,940,739$, 703, 656, $619 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 0.87(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~m}, 2 \mathrm{H}), 1.93(\mathrm{~m}, 1 \mathrm{H})$, $2.06(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{~m}, 2 \mathrm{H}), 2.73(\mathrm{~m}, 2 \mathrm{H}), 3.27(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~m}, 1 \mathrm{H})$, $4.12(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 1 \mathrm{H}), 7.14$ (dd, $J=7.2 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.69(\mathrm{~s}, 1 \mathrm{H})$,
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 8.0,20.0,26.3,28.0,29.5,29.7,37.0,48.1,59.1,63.6,106.7$, 101.0, 117.4, 120.0, 121.6, 128.0, 136.1, 136.2, 174.6;

HRMS (ESIMS) Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$313.1911, found 313.1916.

Compound 11. To a solution of $\mathbf{2}(0.56 \mathrm{~g} 1.19 \mathrm{mmol})$ in THF was added LAH (0.14 g 3.56 mmol) dropwise. After 10 min the mixture was warmed to $80^{\circ} \mathrm{C}$, then to stir further and reflux for about 4 h . The reaction was quenched by saturated $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL} \times 3)$ and washed with brine ($30 \mathrm{~mL} \times 2$). The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ flash column chromatography $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\mathrm{MeOH}(30: 1)$ of the product yielded $234 \mathrm{mg}(66 \%)$ of amine 11 as a colorless solid. mp $74^{\circ} \mathrm{C}$;

IR (KBr) $v_{\max } 3397,3217,3185,3109,3058,2937,2877,2794,1620,1585,1461,1377,1331$, 1308, 1265, 1233, 1169, 1141, 1120, 1041, $739 \mathrm{~cm}^{-1}$;
${ }^{1}$ H NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 0.71(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~m}, 1 \mathrm{H}), 1.14(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~m}$, 2H), $1.58(\mathrm{~m}, 1 \mathrm{H}), 1.74(\mathrm{~m}, 1 \mathrm{H}), 1.83(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{~m}, 3 \mathrm{H}), 3.25(\mathrm{~m}, 5 \mathrm{H}), 3.49(\mathrm{~m}$, 1H), 7.05 (m, 2H), 7.13 (m, 1H), 7.42 (m, 1H), 8.32 ($\mathrm{s}, 1 \mathrm{H})$;
${ }^{13} \mathbf{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 7.7,20.1,21.9,24.2,29.4,34.6,37.0,52.3,54.0,57.8,62.9$, $110.0,110.5,117.5,119.1,120.6,129.7,135.5,136.0 ;$

HRMS (ESIMS) Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$299.2118, found 299.2117

Compound 12. To a solution of the alcohol $11(100 \mathrm{mg}, 0.34 \mathrm{mmol})$ in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ mL) at $0^{\circ} \mathrm{C}$ were sequentially added triethylamine ($9 \mu \mathrm{l}, 0.67 \mathrm{mmol}$), Methanesulfonyl chloride ($31 \mu \mathrm{l}$, 0.4 mmol). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and water (3 mL) was added to quench the reaction. The layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The combined organic layer was washed with water, brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solution was concentrated to dryness in vacuo to give a yellow powder. (121 mg 95\% yield).

(\pm)-Aspidospermidine 1. To a solution of $\mathbf{1 2}(158 \mathrm{mg} 0.45 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added dropwise t-BuOK causing the formation of white precipitate. The reaction stirred for about 16h at room temperature. Then LAH (28.5 mg 0.75 mmol) was added in the mixture solution at $0^{\circ} \mathrm{C}$ and stirred for 30 min and saturated $\mathrm{NH}_{4} \mathrm{Cl}$ was added to quench the reaction the layers were separated and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The combined organic layer was washed with water, brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solution was concentrated to dryness in vacuo to give the TM. (87 mg 62\% yield).

IR (KBr) $v_{\text {max }} 3635,3362,3048,3027,2934,2882,2861,2780,2722,2678,1606,1481,1463$, 1376, 1331, 1318, 1259, 1179, 1134, 1024, 907, 866, 736, $642 \mathrm{~cm}^{-1}$;
${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 0.63(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~m}, 4 \mathrm{H})$, 1.57 (m, 2H), $1.74(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{~m}, 3 \mathrm{H}), 3.10(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{~m}, 1 \mathrm{H}), 3.49(\mathrm{~m}, 1 \mathrm{H})$, 6.63 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.72$ (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.01$ (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08$ (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 6.8,21.8,23.0,28.1,29.9,34.5,35.6,38.8,53.0,53.4,53.9,65.6$, 71.2, 110.3, 118.9, 122.8, 127.0, 135.7, 149.4;

HRMS (ESIMS) Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$283.2169, found 283.2164 .
(

D6.0SI

$$
{ }^{13} \mathrm{C} \mathrm{NMR} 100 \mathrm{Mz} \mathrm{CDCl} 3
$$

Lも・8

${ }^{1} \mathrm{H}$ NMR, $400 \mathrm{Mz}, \mathrm{CDCl}_{3}$

$599 \cdot 8=$
玉TL.8

${ }^{1} \mathrm{H}$ NMR， $400 \mathrm{Mz}, \mathrm{CDCl}_{3}$

عO•OLT
$\angle \nabla^{\circ} O L T$
8も・ LTT

99•62T

8L．9

$00 \cdot \mathrm{\varepsilon g}$
$8 \mathrm{c} \cdot \mathrm{\varepsilon G}$
$\mathrm{~s} \mathrm{~s}^{\circ} \mathrm{\varepsilon}$
$69 \cdot 99$
$\varepsilon 2 \cdot \tau L$
$69 \cdot 9 L$
$00 \cdot L L$
$2 \varepsilon \cdot L L$
$8 て \cdot 0$ TL—

OL•与\＆โ
たも・6もT

