Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Supporting information

Contents

•	Materials and Methods of compounds (6a-t)	3-4
•	Experimental procedures and spectral data of (6a-t)	5-33

Synthesis of 2-Anilinopyridyl-Triazole Conjugates as Antimitotic Agents

Ahmed Kamal^{*},^{a,b,c,d} A.V. Subba Rao,^{a,b} M.V.P.S Vishnuvardhan,^a T. Srinivas Reddy,^c Konderu Swapna,^d Chandrakant Bagul,^d N.V. Subba Reddy^a and Vunnam srinivasulu^a

^aMedicinal Chemistry and Pharmacology, ^bAcademy of Scientific and Innovative Research, ^cIICT-RMIT Research Centre, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India.

^dDepartment of Medicinal Chemistry, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad 500 037, India.

*Correspondence: <u>ahmedkamal@iict.res.in;</u> Phone: (+) 91-40-27193157; Fax: (+) 91-40-27193189

MATERIAL AND METHODS

All chemicals and reagents were obtained from Aldrich (Sigma– Aldrich), St. Louis, MO, USA), Lancaster (Alfa Aesar, Johnson Matthey Company, Ward Hill, MA, USA), or Spectrochem Pvt. Ltd (Mumbai, India) and were used without further purification. Reactions were monitored by TLC performed on silica gel glass plate containing 60 GF-254, and visualization was achieved by UV light or iodine indicator. Column chromatography was performed with Merck 60–120 mesh silica gel. ¹H and ¹³C NMR spectra were determined in CDCl₃ by using Varian and Avance instruments. Chemical shifts are expressed in parts per million (δ in ppm) downfield from internal TMS and coupling constants are expressed in Hz. ¹H NMR spectroscopic data are reported in the following order: multiplicity (s, singlet; br s, broad singlet; d, doublet; dd, doublet of doublets; t, triplet; m, multiplet), coupling constants in Hz, number of protons. ESI mass spectra were recorded on a Micro mass Quattro LC using ESI+ software with capillary voltage 3.98 kV and an ESI mode positive ion trap detector. Melting points were determined with an Electro thermal melting point apparatus, and are uncorrected.

S. No	Compound	\mathbf{R}_1	R
1	6a	4-OMe	4-OMe
2	6b	4-OMe	3,4-diOMe
3	6с	4-OMe	3,5-diOMe
4	6d	4-OMe	3-OPh
5	6e	4-OMe	4-F
6	6f	3,4-diOMe	4-OMe
7	6g	3,4-diOMe	3,4-diOMe
8	6h	3,4-diOMe	3,5-diOMe
9	6i	3,4-diOMe	3-OPh
10	6j	3,4-diOMe	4-F
11	6k	3,4,5-triOMe	4-OMe
12	61	3,4,5-triOMe	3,4-diOMe
13	6m	3,4,5-triOMe	3,5-diOMe
14	6n	3,4,5-triOMe	3-OPh
15	60	3,4,5-triOMe	4-F
16	6р	4- F	4-OMe
17	6q	4-F	3,4-diOMe
18	6r	4-F	3,5-diOMe
19	6 s	4-F	3-OPh
20	6t	4-F	4-F

General method for synthesis of (1-benzyl-1H-1,2,3-triazol-4-yl)(2-(phenylamino)pyridin-3-yl)methanone (6a-t)

To a solution of substituted ethynyl ketones (**14a-d**) (0.59 mmol) and substituted benzyl azides (**17a-e**) (0.65 mmol) in 2:1 mixture of water and tert-butyl alcohol, sodium ascorbate (0.06 mmol) and copper (II) sulfate (0.03 mmol) were added sequentially. The reaction was stirred at room temperature for overnight, TLC analysis indicated completion of reaction. The solvent was concentrated under vacuum and extracted with EtOAc to give crude product. The crude products were purified by column chromatography to afford pure products (**6a-t**) as yellow solids.

¹H NMR SPECTRUM OF COMPOUND 6a

¹³C NMR SPECTRUM OF COMPOUND 6a

HIGH RESOLUTION MASS SPECTRUM OF COMPOUND 6a

¹H NMR SPECTRUM OF COMPOUND 6b

¹³C NMR SPECTRUM OF COMPOUND 6b

HIGH RESOLUTION MASS SPECTRUM OF COMPOUND 6b

¹H NMR SPECTRUM OF COMPOUND 6c

¹³C NMR SPECTRUM OF COMPOUND 6c

HIGH RESOLUTION MASS SPECTRUM OF COMPOUND 6c

¹³C NMR SPECTRUM OF COMPOUND 6d

HIGH RESOLUTION MASS SPECTRUM OF COMPOUND 6d

¹H NMR SPECTRUM OF COMPOUND 6e

¹³C NMR SPECTRUM OF COMPOUND 6e

¹H NMR SPECTRUM OF COMPOUND 6f

¹³C NMR SPECTRUM OF COMPOUND 6f

HIGH RESOLUTION MASS SPECTRUM OF COMPOUND 6f

¹H NMR SPECTRUM OF COMPOUND 6g

]

¹³C NMR SPECTRUM OF COMPOUND 6g

HIGH RESOLUTION MASS SPECTRUM OF COMPOUND 6g

¹H NMR SPECTRUM OF COMPOUND 6h

HIGH RESOLUTION MASS SPECTRUM OF COMPOUND 6h

¹³C NMR SPECTRUM OF COMPOUND 6h

¹H NMR SPECTRUM OF COMPOUND 6i

¹³C NMR SPECTRUM OF COMPOUND 6i

HIGH RESOLUTION MASS SPECTRUM OF COMPOUND 6i

¹H NMR SPECTRUM OF COMPOUND 6j

¹³C NMR SPECTRUM OF COMPOUND 6j

HIGH RESOLUTION MASS SPECTRUM OF COMPOUND 6j

¹H NMR SPECTRUM OF COMPOUND 6k

¹³C NMR SPECTRUM OF COMPOUND 6k

HIGH RESOLUTION MASS SPECTRUM OF COMPOUND 6k

¹H NMR SPECTRUM OF COMPOUND 61

HIGH RESOLUTION MASS SPECTRUM OF COMPOUND 61

¹³C NMR SPECTRUM OF COMPOUND 61

¹H NMR SPECTRUM OF COMPOUND 6m

¹³C NMR SPECTRUM OF COMPOUND 6m

HIGH RESOLUTION MASS SPECTRUM OF COMPOUND 6m

¹³C NMR SPECTRUM OF COMPOUND 6n

HIGH RESOLUTION MASS SPECTRUM OF COMPOUND 6n

¹H NMR SPECTRUM OF COMPOUND 60

¹³C NMR SPECTRUM OF COMPOUND 60

HIGH RESOLUTION MASS SPECTRUM OF COMPOUND 60

¹H NMR SPECTRUM OF COMPOUND 6p

¹³C NMR SPECTRUM OF COMPOUND 6p

¹H NMR SPECTRUM OF COMPOUND 6q

¹³C NMR SPECTRUM OF COMPOUND 6q

HIGH RESOLUTION MASS SPECTRUM OF COMPOUND 6q

¹H NMR SPECTRUM OF COMPOUND 6r

¹³C NMR SPECTRUM OF COMPOUND 6r

¹H NMR SPECTRUM OF COMPOUND 6s

HIGH RESOLUTION MASS SPECTRUM OF COMPOUND 6r

HIGH RESOLUTION MASS SPECTRUM OF COMPOUND 6s

¹H NMR SPECTRUM OF COMPOUND 6t

¹³C NMR SPECTRUM OF COMPOUND 6t

HIGH RESOLUTION MASS SPECTRUM OF COMPOUND 6t