Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Synthesis of multiply substituted 1,6-dihydropyridines through Cu(I)-catalyzed 6-endo cyclization

Haruki Mizoguchi¹, Ryo Watanabe,¹ Shintaro Minami¹, Hideaki Oikawa¹ and Hiroki Oguri^{1,2*}

¹Division of Chemistry, Graduate School of Science, Hokkaido University, North 10, West 8, Kita-ku, Sapporo 060-0810, Japan

²JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan

*Corresponding Author: oguri@sci.hokudai.ac.jp

Table of contents

- S2: General Methods & Materials.
- S3-S9: Synthesis of *N*-propargylenamines.
- S11-S17: Cu(I)-catalyzed Cyclization of N-propargylenamine
- S18-S19: Cu(I)-catalyzed cyclization of a deuterium labeled N-propargylenamine

S19: References

S20-S66: The ¹H, ¹³C-NMR spectra of synthetic compounds.

General Methods

All reactions were performed under a nitrogen atmosphere unless otherwise specified. Microwave reactions were performed using a Biotage Initiator. NMR spectra were recorded on JEOL JNM-ECP 300 (¹H/300 MHz, ¹³C/75 MHz) spectrometer, JEOL JNM-ECX 400 (¹H/400 MHz, ¹³C/100 MHz) spectrometer, JEOL JNM-ECX 600 (¹H/600 MHz, ¹³C/150 MHz) spectrometer and Bruker VSP 500 (¹H/500 MHz, ¹³C/125 MHz) spectrometer. Chemical Shifts are reported in δ (ppm) using chloroform, acetonitrile as an internal standard of δ 7.26, 1.94, and 77.16, 118.26 for ¹H and ¹³C-NMR, respectively. Data for ¹H-NMR are reported as follows: chemical shift (number of hydrogens, multiplicity, coupling constant). Multiplicity is abbreviated as follows: s (singlet), d (doublet), t (triplet), q (quartet), quin (quintet), m (multiplet), br (broad). ESI-Mass spectra were recorded on JEOL AccuTOF LC-Plus JMS-T100. The medium pressure liquid chromatography (MPLC) purifications were performed on a YAMAZEN YFLC-AI-580. Where necessary, solvents were distilled from appropriate drying agents prior to use. Reactions were monitored by thin layer chromatography using Merck Millipore TLC Silica gel F₂₅₄ plates (0.25 mm) which were visualized using UV light, *p*-anisaldehyde stain and PMS stain. Flash column chromatography was performed using Kanto Silica Gel 60N.

Materials

Commercial solvents and reagents were used as received with the following exceptions. The cationic Cu(I) complex, $[Cu(BINAP)(MeCN)]PF_6$, $[Cu(dppf)(MeCN)]PF_6$, were prepared with modified protocol reported by Kim and co-workers¹ and purified by precipitation from CH₂Cl₂/Et₂O=1/1 solution. $[Cu(Xantphos)(MeCN)]PF_6²$, and (*S*)-4-benzyl-3-propioloyloxazolidin-2-one³ were prepared by applying reported protocols.

Synthesis of N-propargylenamines

Methyl 3-(benzyl(prop-2-yn-1-yl)amino)propanoate (4)

A solution of benzyl amine **3** (1.83 ml, 16.8 mmol) and methyl acrylate (1.66 ml, 18.5 mmol) in MeOH (5.0 ml) was stirred at 65 °C for 10 min under microwave irradiation. After concentration of the mixture *in vacuo*, the residue was purified by silica-gel chromatography to afford methyl 3-(benzylamino)propanoate **S1** (2.68 g, 13.9 mmol, 83%).

A solution of secondary amine S1 (6.43 g, 33.3 mmol), propargyl bromide (3.16 ml, 36.6 mmol), K_2CO_3 (9.20 g, 66.6 mmol), and Et₃N (4.64 ml, 33.3 mmol) in acetonitrile (133 ml) was stirred at 70 °C for 16 h. The resulting mixture was then treated with another portion of propargyl bromide (1.44 ml, 16.7 mmol). After being stirred at 85 °C for 6 h, the mixture was concentrated *in vacuo* and then added with EtOAc and H₂O. Organic phase was washed with water, brine and the dried over Na₂SO₄. After concentration, the residue was purified by silica-gel chromatography to afford tertiary amine 4 (5.78 g, 25.0 mmol, 75%).

4: ¹H-NMR (500 MHz, CDCl₃): δ 7.37-7.20 (5H, m), 3.68 (3H, s), 3.65 (2H, s), 3.32 (2H, d, J = 2.2 Hz), 2.91 (2H, t, J = 6.9 Hz), 2.53 (2H, t, J = 6.9 Hz), 2.24 (1H, t, J = 2.2 Hz); ¹³C-NMR (125 MHz, CDCl₃): δ 172.92, 138.55, 129.14, 128.43, 127.35, 78.32, 73.47, 57.79, 51.74, 49.15, 41.44, 33.27; HRMS (ESI, m/z): [M+H]⁺ calcd. for C₁₄H₁₈NO₂ 232.1332; found 232.1330. The ¹H-NMR and ¹³C-NMR spectra of **4** are shown in Figure **S1** and **S2**.

(E)-Methyl 3-(benzyl(prop-2-yn-1-yl)amino)acrylate (1a)

A solution of amine **4** (1.08 g, 4.67 mmol) and methyl propiolate (0.91 ml, 10.2 mmol) in 1,2-dichloroethane/2,2,2-trifluoroethanol = 1/1 (24 ml) was stirred at r.t. for 14 h. The mixture was treated with saturated aqueous solution of NaHCO₃ and extracted with EtOAc. The combined organic extracts were washed with brine and dried over Na₂SO₄. The residue was concentrated *in vacuo* and purified by silica-gel chromatography to afford **1a** (962 mg, 4.20 mmol, 90%).

1a: TLC R_f = 0.35 (Hex:AcOEt = 4:1); ¹H NMR (500 MHz, CDCl₃): δ 7.60 (1H, d, *J* = 13.1 Hz), 7.38-7.27 (3H, m), 7.24 (2H, d, *J* = 6.9 Hz), 4.83 (1H, d, *J* = 13.1 Hz), 4.41 (2H, s), 3.81 (2H, d, *J* = 2.2 Hz), 3.68 (3H, s), 2.30 (1H, t, *J* = 2.2 Hz); ¹³C-NMR (125 MHz, CDCl₃): 169.83, 151.42, 135.70, 128.98, 128.16, 127.81, 87.43, 73.67, 50.87; HR-MS (ESI, *m/z*): [M+H]⁺ calcd. For C₁₄H₁₆NO₂ 230.1176; found 230.1216.

The ¹H-NMR and ¹³C-NMR spectra of **1a** are shown in Figure **S3** and **S4**.

(E)-4-Benzyl-3-(3-((4-methoxybenzyl)(prop-2-yn-1-yl)amino)acryloyl)oxazolidin-2-one (1b)

A solution of *N*-(4-methoxybenzyl)prop-2-yn-1-amine $S2^4$ (858 mg, 4.90 mmol) and (*S*)-4-benzyl-3-propioloyloxazolidin-2-one (1.12 g, 4.90 mmol) in CH₂Cl₂ (16 ml) was stirred at r.t. for 1.5 h. The residue was concentrated *in vacuo* and purified by silica-gel chromatography to afford **1b** (1.91 g, 4.72 mmol, 96%).

1b: ¹H-NMR (500 MHz, CDCl₃): δ 7.89 (1H, d, J = 12.6 Hz), 7.33 (2H, t, J = 7.3 Hz), 7.29-7.18 (5H, m), 6.89 (2H, m), 6.40 (1H, br-d, J = 12.6 Hz), 4.75 (1H, m), 4.45 (2H, s), 4.14 (1H, dd, J = 16.4, 8.8 Hz), 4.11 (1H, dd, J = 8.8, 3.2 Hz), 3.89 (2H, br-s), 3.81 (3H, s), 3.37 (1H, dd, J = 13.2, 3.2 Hz), 2.78 (1H, dd, J = 13.2, 9.8 Hz), 2.35 (1H, br-s); ¹³C-NMR (125 MHz, CDCl₃): δ 166.61, 159.74, 154.17, 153.13, 136.20, 129.68, 129.62, 128.98, 127.22, 114.43, 87.62, 65.86, 55.58, 55.45, 38.61; HRMS (ESI, *m/z*): [M+Na]⁺ calcd. for C₂₄H₂₄N₂O₄Na, 427.1628; found, 427.1641. The ¹H-NMR and ¹³C-NMR spectra of **1b** are shown in Figure **S5** and **S6**.

(E)-N-Benzyl-N-(2-tosylvinyl)prop-2-yn-1-amine (1c)

A solution of amine 4 (62.4 mg, 0.270 mmol) and ethynyl *p*-tolylsulfone (58.6 mg, 0.330 mmol) in 1.2-dichloroethane/2,2,2-trifluoroethanol = 1/1 (540 µl) was stirred at r.t. for 12 h. The mixture was treated with saturated aqueous solution of NaHCO₃ at 0 °C and extracted with EtOAc. The combined organic extracts were washed with saturated aqueous solution of NaHCO₃, brine and dried over Na₂SO₄. The residue was concentrated and purified by silica-gel chromatography to afford **1c** (70.1 mg, 0.215 mmol, 80%).

1c: TLC $R_f = 0.61$ (Hex:AcOEt = 1:1); ¹H NMR (500 MHz, CDCl₃): δ 7.74 (2H, d, *J* = 8.2 Hz), 7.50 (1H, d, *J* = 12.9 Hz), 7.37-7.29 (3H, m), 7.27 (2H, d, *J* = 8.2 Hz), 7.23-7.19 (2H, m), 5.20 (1H, d, *J* = 12.9 Hz), 4.39 (2H, s), 3.77 (2H, s), 2.41 (2H, s), 2.30 (1H, s); ¹³C NMR (125 MHz, CDCl₃): 149.19, 142.64, 141.68, 135.00, 129.61, 129.07, 128.37, 127.84, 126.51, 96.64, 76.72, 74.32, 21.61; HRMS (ESI, *m/z*): [M+Na]⁺ calcd. for C₁₉H₁₉NO₂SNa 348.1028, found 348.1044. The ¹H-NMR and ¹³C-NMR spectra of **1c** are shown in Figure **S7** and **S8**.

(E)-3-(benzyl(prop-2-yn-1-yl)amino)-1-phenylprop-2-en-1-one (1d)

A mixture of amine **4** (1.77 g, 7.65 mmol) and 1-phenyl-3-(trimethylsilyl)prop-2-yn-1-one (**5**) (2.32 g, 11.5 mmol) in 1,2-dichloroethane/2,2,2-trifluoroethanol=1/1 (26 ml) was stirred at 45 °C for 10 h 40 min. After concentrated *in vacuo*, the residue was purified by silica-gel chromatography to afford **1d** (1.93 g, 7.01 mmol, 92%).

1d: ¹H-NMR (500 MHz, CDCl₃): δ 7.95 (1H, d, J = 12.6 Hz), 7.89 (2H, d, J = 7.3 Hz), 7.49-7.45 (1H, m), 7.44-7.34 (4H, m), 7.35-7.31 (1H, m), 7.30-7.26 (2H, m), 6.02 (1H, d, J = 12.6 Hz), 4.54 (2H, s), 3.93 (2H, br-s), 2.36 (1H, s); ¹³C-NMR (125 MHz, CDCl₃): δ 189.28, 152.59, 140.13, 135.24, 131.34, 129.01, 128.27, 127.83, 127.71, 94.55, 76.99, 74.08; HRMS (ESI, m/z): [M+H]⁺ calcd. for C₁₉H₁₈NO, 276.1383; found, 276.1385.

The ¹H-NMR and ¹³C-NMR spectra of **1d** are shown in Figure **S9** and **S10**.

Methyl (E)-3-(benzyl(prop-2-yn-1-yl)amino)but-2-enoate (1e)

To a solution of *N*-benzylprop-2-yn-1-amine **6** (475 mg, 3.27 mmol) and methyl acetoacetate (0.705 ml, 6.54 mmol) in benzene (8.8 ml) was added *p*-toluenesulfonic acid monohydrate (37.3 mg, 0.196 mmol) and stirred at 95 °C for 12 h using a Dean - Stark apparatus. After cooled to room temperature, the mixture was washed with aqueous solution of 1N NaOH, water and brine, dried over Na₂SO₄. After filtration, the residue was concentrated *in vacuo* and purified by silica-gel chromatography to afford **1e** (318 mg, 1.31 mmol, 40%).

1e: TLC R_f = 0.60 (Hex:AcOEt = 1:1); ¹H-NMR (500 MHz, CDCl₃): δ 7.34 (2H, t, *J* = 7.3 H), 7.28 (1H, t, *J* = 7.3 Hz), 7.18 (2H, d, *J* = 7.3 Hz), 4.92 (1H, s), 4.53 (2H, s), 3.93 (2H, d, *J* = 2.2 Hz), 3.63 (3H, s), 2.56 (3H, s), 2.28(1H, t, *J* = 2.2 Hz); ¹³C-NMR (125 MHz, CDCl₃): 169.41, 160.38, 136.70, 128.93, 127.67, 126.82, 87.46, 78.24, 73.04, 53.05, 50.38, 39.35, 15.60; HR-MS (ESI, *m/z*): [M+H]⁺ calcd. for C₁₅H₁₈NO₂ 244.1332, found 244.1357.

The ¹H-NMR and ¹³C-NMR spectra of **1e** are shown in Figure **S11** and **S12**.

3-(benzyl(prop-2-yn-1-yl)amino)cyclohex-2-en-1-one (1f)

To a solution of benzyl amine (4.26 ml, 39.0 mmol) in toluene (6.3 ml) was added propargyl bromide (0.560 ml, 6.50 mmol) and stirred at r.t. for 14 h. After concentrated *in vacuo*, the residue was purified by silica-gel chromatography to afford **6** (839 mg, 5.78 mmol, 89%).

To a solution of amine **6** (145 mg, 1.00 mmol) in benzene (10 ml) was added 1,3-cyclohexanedione (178 mg, 1.60 mmol) and *p*-toluenesulfonic acid monohydrate (11.4 mg, 0.06 mmol) and heated under reflux for 12 h using a Dean - Stark apparatus. After cooled to room temperature, the mixture was washed with aqueous solution of 1M NaOH and brine, dried over Na₂SO₄. The residue was concentrated *in vacuo* and purified by silica-gel chromatography to afford **1f** (109 mg, 0.455 mmol, 46%).

1f: TLC $R_f = 0.20$ (Hex:AcOEt = 1:5); ¹H-NMR (500 MHz, CDCl₃): δ 7.38-7.33 (2H, m), 7.32-7.27 (1H, m), 7.18 (2H, d, J = 7.9 Hz), 5.41 (1H, s), 4.56 (2H, s), 3.97 (2H, d, J = 2.2 Hz), 2.55 (2H, t, J = 6.3 Hz), 2.39-2.30 (2H, m), 2.31 (1H, s), 2.05-1.99 (2H, m); ¹³C NMR (125 MHz, CDCl₃): 197.62, 164.56, 136.15, 129.10, 127.95, 126.77, 101.21, 77.78, 73.60, 53.31, 39.53, 35.88, 27.10, 22.37; HRMS (ESI, *m/z*): calcd. for C₁₆H₁₈NO [M+H]⁺ 240.1383, found 240.1388. The ¹H-NMR and ¹³C-NMR spectra of **1f** are shown in Figure **S13** and **S14**.

Methyl (E)-3-(benzyl(3-phenylprop-2-yn-1-yl)amino)acrylate (1g)

A mixture of amine **4** (762 mg, 3.29 mmol), Pd(PPh₃)₄ (87.7 mg, 0.076mmol), CuI (43.4 mg, 0.228 mmol), Et₃N (0.530 ml, 3.80 mmol) and PhI (0.282 ml, 2.53 mmol) in MeCN (16.5 ml) was heated at 60 °C for 3 h. After concentrated *in vacuo*, the residue was purified by silica-gel chromatography to afford methyl 3-(benzyl(3-phenylprop-2-yn-1-yl)amino)propanoate **S3** (867 mg). To a solution of **S3** (867 mg) in 1,2-dichloroethane/2,2,2-trifluoroethanol = 1/1 (14.7 ml) was added methyl propiolate (0.277 ml, 3.10 mmol) and stirred at r.t. for 12 h. The mixture was quenched with saturated aqueous solution of NaHCO₃ and extracted with EtOAc. The combined organic extracts were washed with brine and dried over Na₂SO₄. After concentration *in vacuo*, the residue was purified by silica-gel chromatography to afford **1g** (775 mg, 2.54 mmol, quant. for 2 steps).

1g: TLC $R_f = 0.35$ (Hex:AcOEt = 4:1); ¹H-NMR (500 MHz, CDCl₃): δ 7.68 (1H, d, J = 13.2 Hz), 7.43-7.26 (10H, m), 4.88 (1H, d, J = 13.2 Hz), 4.47 (2H, s), 4.05 (2H, br-s), 3.69 (3H, s); ¹³C-NMR (75 MHz, CDCl₃): 169.85, 151.49, 135.85, 131.79, 128.85, 128.62, 128.36, 127.97, 127.69, 122.33, 86.99, 85.45, 82.72, 55.68, 50.73, 40.81; HRMS (ESI, m/z): calcd. for C₂₀H₂₀NO₂ [M+H]⁺ 306.1489, found 306.1489.

The ¹H-NMR and ¹³C-NMR spectra of **1g** are shown in Figure **S15** and **S16**.

Dimethyl 3,3'-(hexa-2,4-diyne-1,6-diylbis(benzylazanediyl))(2E,2'E)-diacrylate (1h)

To a solution of amine **4** (565 mg, 2.44 mmol) in acetone (2.0 ml) was added a solution of preliminary mixed CuCl (21.4 mg, 0.216 mmol) and *N*,*N*,*N*',*N*'-tetramethylethylenediamine (11 μ l, 0.072 mmol) in acetone (2.0 ml) and stirred at r.t. for 12 h under O₂ atmosphere. After concentrated *in vacuo*, the residue was purified by silica-gel column chromatography to afford **S4** (553 mg, 1.20 mmol, 98%).

To a solution of amine S4 (530 mg, 1.15 mmol) in 1,2-dichloroethane/2,2,2-trifluoroethanol=1/1 (9.0 ml) was added methyl propiolate (383 μ l, 4.60 mmol) and stirred at r.t. for 19 h. After concentrated *in vacuo*, the residue was purified by silica-gel chromatography to afford 1h (423 mg, 0.927 mmol, 81%).

1h: ¹H-NMR (500 MHz, CDCl₃): δ 7.56 (2H, d, J = 12.9 Hz), 7.38-7.28 (6H, m), 7.22 (4H, d, J = 6.9 Hz), 4.83 (2H, d, J = 12.9 Hz), 4.39 (4H, s), 3.85 (4H, s), 3.68 (6H, s); ¹³C-NMR (125 MHz, CDCl₃): δ 169.66, 151.28, 135.45, 129.04, 128.29, 127.87, 87.94, 72.81, 69.18, 56.25, 50.90, 40.08; HRMS (ESI, m/z): [M+H]⁺ calcd. for C₂₈H₂₉N₂O₄, 457.2122; found, 457.2117. The ¹H-NMR and ¹³C-NMR spectra of **1h** are shown in Figure **S17** and **S18**.

Methyl (E)-3-(benzyl(2-methylbut-3-yn-2-yl)amino)acrylate (1i)

To a solution of amine $\mathbf{85}^5$ (182 mg, 1.25 mmol) in 1,2-dichloroethane/2,2,2-trifluoroethanol=1/1 (6 ml) was added methyl propiolate (209 µl, 2.51 mmol) and stirred at 45 °C for 19 h. After concentrated *in vacuo*, the residue was purified by silica-gel column chromatography to afford **1i** (263 mg, 0.970 mmol, 78%).

1i: ¹H-NMR (500 MHz, CDCl₃): δ 8.06 (1H, d, J = 12.9 Hz), 7.30 (2H, t, J = 7.6 Hz), 7.23 (1H, t, J = 7.6 Hz), 7.20 (2H, d, J = 7.6 Hz), 4.54 (1H, d, J = 12.9 Hz), 4.52 (2H, s), 3.61 (3H, s), 2.47 (1H, s), 1.64 (6H, s); ¹³C-NMR (125 MHz, CDCl₃): δ 169.97, 147.59, 137.01, 128.7, 127.1, 126.24, 88.45, 85.86, 72.94, 56.95, 50.69, 50.42, 29.57; HRMS (ESI, m/z): [M+H]⁺ calcd. for C₁₆H₂₀NO₂, 258.1489; found, 258.1482.

The ¹H-NMR and ¹³C-NMR spectra of **1i** are shown in Figure **S19** and **S20**.

Methyl (E)-3-(benzyl(but-2-yn-1-yl)amino)-3-phenylacrylate (1j)

To a solution of *N*-benzylbut-2-yn-1-amine **S6** (195 mg, 1.23 mmol) in methanol (1.2 ml) was added methyl 3-phenylpropiolate (0.19 ml, 1.29 mmol) at room temperature and then stirred at

70 °C for 16 h. After concentrated *in vacuo*, the residue was purified by silica-gel chromatography to afford **1j** (176 mg, 0.551 mmol, 45%).

1j: TLC $R_f = 0.38$ (Hex:AcOEt = 2:1); ¹H-NMR (500 MHz, CDCl₃): δ 7.43-7.40 (3H, m), 7.33-7.31 (4H, m), 7.29-7.25 (1H, m), 7.23 (1H, br-d, J = 7.4 Hz), 5.13 (1H, s), 4.33 (2H, br-s), 3.74 (2H, br-s), 3.48 (3H, s), 1.84 (3H, t, J = 2.2 Hz); ¹³C-NMR (75 MHz, CDCl₃): 167.97, 162.56, 136.75, 136.08, 128.73 128.58, 128.48, 128.23, 127.40, 89.75, 80.78, 73.36, 52.63, 50.20, 39.34, 3.52 ¹H-NMR and ¹³C-NMR spectra of **1j** are shown in Figure **S21** and **S22**.

Cu(I)-catalyzed Cyclization of N-propargylenamine

General procedure

A solution of *N*-propargylenamine (0.200 mmol) and [Cu(Xantphos)(MeCN)]PF₆ (0.020 mmol) in CH₂Cl₂ (2.0 ml) was stirred at r.t. for several hours. The reaction mixture was then treated with 1,10-phenanthroline (0.020 mmol) to deactivate the copper catalyst. After concentration *in vacuo*, 4-nitrobenzonitrile (0.200 mmol) was added as internal standard for ¹H-NMR. Yield of desired product was calculated based on the value of integral for a signal of 4-nitrobenzonitrile and that of desired product. The ¹H-NMR and ¹³C-NMR of the internal standard are shown in Figure **S45** and **S46**.

Methyl 1-benzyl-4-phenyl-1,6-dihydropyridine-3-carboxylate (2a)

A solution of *N*-propargylenamine **1a** (251 mg, 1.09 mmol) and [Cu(Xantphos)(MeCN)]PF₆ (90.6 mg, 0.109 mmol) in CH₂Cl₂ (11 ml) was stirred at r.t. for 40 min. The reaction mixture was then treated with 1,10-phenanthroline (25.2 mg, 0.140 mmol) to deactivate the copper catalyst. After concentrated *in vacuo*, 4-nitrobenzonitrile (162 mg, 1.09 mmol) was added. Due to instability of **2a** to silica-gel chromatography, the yield of **2a** (98%) was calculated based on ¹H-NMR.

2a: TLC $R_f = 0.45$ (Hex:Acetone = 4:1); ¹H-NMR (300 MHz, CDCl₃): δ 7.43-7.28 (6H, m), 6.30 (1H, m), 4.96 (1H, dt, J = 10.1, 3.1 Hz), 4.20 (2H, s), 4.01 (2H, dd, J = 3.1, 1.9 Hz), 3.68 (3H, s); ¹³C-NMR (75 MHz, CDCl₃): 167.00, 147.94, 134.95, 128.92, 128.20, 127.89, 122.20, 109.85, 96.04, 60.08, 50.63, 47.98; HR-MS (ESI): calcd. for the corresponding pyridinium salt C₁₄H₁₄NO₂[M]⁺ 228.1019, found 228.1019.

¹H-NMR and ¹³C-NMR spectra of the crude reaction mixture including the internal standard are shown in Figure **S23** and **S24**.

4-Benzyl-3-(1-(4-methoxybenzyl)-1,6-dihydropyridine-3-carbonyl)oxazolidin-2-one (2b)

A solution of *N*-propargylenamine **1b** (63.7 mg, 0.170 mmol) and [Cu(Xantphos)(MeCN)]PF₆(14.1 mg, 0.0170 mmol) in CH₂Cl₂ (1.7 ml) was stirred at r.t. for 180 min. The reaction mixture was then treated with 1,10-phenanthroline (3.1 mg, 0.017 mmol) to deactivate the copper catalyst. After concentration *in vacuo*, 4-nitrobenzonitrile (26.8 mg, 0.181 mmol) was added. Due to instability of **2b** to silica-gel chromatography, the yield of **2b** (84%) was calculated based on ¹H-NMR.

2b: TLC $R_f = 0.38$ (Hex:AcOEt = 1:1); ¹H-NMR (500 MHz, CDCl₃): δ 7.45 (1H, s), 7.32-7.17 (7H, m), 6.92 (2H, d, J = 8.5 Hz), 6.33 (1H, d, J = 10.4 Hz), 5.05 (1H, dt, J = 10.1, 3.2 Hz), 4.90 (1H, ddd, J = 17.0, 8.5, 3.5 Hz), 4.30-4.24 (2H, m), 4.18 (1H, d, J = 14.5 Hz), 4.12-4.06 (3H, m), 3.18 (3H, s), 3.26 (1H, dd, J = 13.6, 3.5 Hz), 2.83 (1H, dd, J = 13.6, 8.8 Hz); ¹³C NMR (125 MHz, CDCl₃): 164.98, 159.78, 155.33, 152.49, 135.63, 129.59, 129.55, 128.73, 127.09, 125.84, 122.31, 114.42, 109.88, 98.58, 66.57, 60.38, 55.54, 55.37, 48.36, 37.89; HR-MS (ESI): calcd. for C₂₄H₂₄N₂O₄Na [M+Na]⁺ 427.1628, found 427.1565.

¹H-NMR and ¹³C-NMR spectra of the crude reaction mixture including the internal standard are shown in Figure **S25** and **S26**.

1-Benzyl-5-tosyl-1,2-dihydropyridine (2c)

A solution of *N*-propargylenamine **1c** (50.2 mg, 0.154 mmol) and [Cu(Xantphos)(MeCN)]PF₆ (13.0 mg, 0.0157 mmol) in CH₂Cl₂ (1.6 ml) was stirred at r.t. for 4 h. The reaction mixture was treated with 1,10-phenanthroline (3.8 mg, 0.0211 mmol) to deactivate the copper catalyst. After concentration *in vacuo*, 4-nitrobenzonitrile (22.8 mg, 0.154 mmol) was added. The yield of **2c**

(99%) was calculated based on ¹H-NMR.

2c: TLC $R_f = 0.48$ (Hex:Acetone = 2:1); ¹H-NMR (500 MHz, CDCl₃): δ 7.67 (2H, m), 7.32-7.18 (8H, m), 5.90 (1H, m), 4.90 (1H, dt, J = 10.2, 3.2 Hz), 4.13 (2H, s), 3.89 (2H, dd, J = 3.2, 1.9 Hz), 2.34 (3H, s); ¹³C-NMR (75 MHz, CDCl₃): 145.57, 142.48, 140.76, 134.35, 129.57, 128.93, 128.30, 127.92, 126.39, 119.35, 111.59, 104.29, 59.91, 47.77, 21.44; HR-MS (ESI): calcd. for the corresponding pyridinium salt C₁₉H₁₈NO₂S [M]⁺ 324.1053, found 324.1091.

¹H-NMR and ¹³C-NMR spectra of the crude reaction mixture including the internal standard are shown in Figure **S27** and **S28**.

(1-Benzyl-1,6-dihydropyridin-3-yl)(phenyl)methanone (2d)

A solution of *N*-propargylenamine **1d** (100 mg, 0.364 mmol) and [Cu(Xantphos)(MeCN)]PF₆ (30.2 mg, 0.0365 mmol) in 1,2-dichloroethane (3.6 ml) was stirred at 65 °C for 3 h. The reaction mixture was then treated with 1,10-phenanthroline (11.2 mg, 0.0621 mmol) to deactivate the copper catalyst. After concentration *in vacuo*, 4-nitrobenzonitrile (53.9 mg, 0.364 mmol) was added. The yield of **2d** (93%) was calculated based on ¹H-NMR.

2d: TLC $R_f = 0.33$ (Hex:AcOEt = 2:1); ¹H-NMR (500 MHz, CDCl₃): δ 7.52-7.50 (2H, m), 7.40-7.33 (6H, m), 7.23-7.17 (3H, m), 6.63 (1H, m), 5.14 (1H, dt, J = 10.2, 3.3 Hz), 4.19 (2H, s), 4.11 (2H, dd, J = 3.3, 1.9 Hz); ¹³C-NMR (125 MHz, CDCl₃): 190.18, 152.71, 140.40, 134.41, 129.88, 129.12, 128.49, 128.34, 128.12, 127.90, 122.25, 111.70, 107.35, 60.46, 48.79; HRMS (ESI): calcd. for C₁₉H₁₇NONa [M+Na]⁺ 298.1202, found 298.1201.

¹H-NMR and ¹³C-NMR spectra of the crude reaction mixture for **2d** including the internal standard are shown in Figure **S29** and **S30**.

Methyl 1-benzyl-2-methyl-1,6-dihydropyridine-3-carboxylate (2e)

A solution of *N*-propargylenamine **1e** (48.0 mg, 0.197 mmol) and [Cu(Xantphos)(MeCN)]PF₆(16.7 mg, 0.0202 mmol) in CH₂Cl₂ (2.0 ml) was stirred at r.t. for 2 h. The reaction mixture was then treated with 1,10-phenanthroline (4.7 mg, 0.0261 mmol) to deactivate the copper catalyst. After concentration *in vacuo*, 4-nitrobenzonitrile (29.2 mg, 0.197 mmol) was added. Yield of **2e** (80%) was calculated based on ¹H-NMR due to instability of **2e** to silica-gel chromatography.

2e: TLC $R_f = 0.38$ (Hex:Acetone = 5:1); ¹H-NMR (500 MHz, CDCl₃): δ 7.40-7.37 (2H, m), 7.32-7.24 (3H, m), 6.54 (1H, m), 5.00 (1H, dt, J = 9.8, 3.7 Hz), 4.50 (2H, s), 4.01 (2H, m), 3.70 (3H, s), 2.52 (3H, s) ; ¹³C-NMR (75 MHz, CDCl₃): 167.85, 157.65, 136.19, 128.96, 127.59, 126.46, 125.45, 107.19, 97.54, 54.44, 50.63, 50.57, 16.16; HR-MS (ESI): calcd. for C₁₅H₁₇NO₂Na [M+Na]⁺ 266.1151, found 266.1120.

¹H-NMR and ¹³C-NMR spectra of the crude reaction mixture including the internal standard are shown in Figure **S31**and **S32**.

1-Benzyl-2,6,7,8-tetrahydroquinolin-5(1H)-one (2f)

A solution of *N*-propargylenamine **1f** (138 mg, 0.578 mmol) and [Cu(Xantphos)(MeCN)]PF₆ (48.5 mg, 0.0586 mmol) in 1,2-dichloroethane (6.0 ml) was stirred at 65 °C for 2 h. The reaction mixture was treated with 1,10-phenanthroline (13.8 mg, 0.0767 mmol) to deactivate the copper catalyst.

After concentration *in vacuo*, 4-nitrobenzonitrile (85.6 mg, 0.578 mmol) was added. The yield of **2f** (94%) was calculated based on ¹H-NMR.

2f: TLC $R_f = 0.36$ (Hex:Acetone = 1:2); ¹H-NMR (500 MHz, CDCl₃): δ 7.37-7,21 (5H, m), 6.60 (1H, m), 5.08 (1H, dt, J = 10.1, 3.3 Hz), 4.41 (2H, s), 4.13 (2H, dd, J = 3.3, 1.7 Hz), 2.47 (2H, t, J = 6.3 Hz), 2.28 (2H, t, J = 6.3 Hz), 1.90 (2H, quin, J = 6.3 Hz); ¹³C-NMR (75 MHz, CDCl₃): 191.24, 161.45, 135.25, 129.08, 127.81, 126.33, 121.06, 110.71, 106.32, 53.97, 51.41, 35.42, 26.28, 21.23; HR-MS (ESI): calcd. for C₁₆H₁₈NO [M+H]⁺ 240.1383, found 240.1382.

¹H-NMR and ¹³C-NMR spectra of the crude reaction mixture including the internal standard are shown in Figure **S33** and **S34**.

Methyl 1-benzyl-4-phenyl-1,6-dihydropyridine-3-carboxylate (2g)

A solution of *N*-propargylenamine **1g** (70.4 mg, 0.231 mmol) and [Cu(Xantphos)(MeCN)]PF₆ (20.0 mg, 0.0241 mmol) in CH₂Cl₂ (2.3 ml) was stirred at r.t. for 110 min. The reaction mixture was then treated with 1,10-phenanthroline (4.14 mg, 0.0230 mmol) to deactivate the copper catalyst. After concentration *in vacuo*, 4-nitrobenzonitrile (28.7 mg, 0.194 mmol) was added. Yield of **2g** (82%) was calculated based on ¹H-NMR.

2g: TLC $R_f = 0.45$ (Hex:AcOEt = 4:1); ¹H-NMR (500 MHz, CDCl₃): δ 7.70 (1H, s), 7.42-7.37 (2H, m), 7.37-7.30 (3H, m), 7.30-7.21 (3H, m), 7.20-7.16 (2H, m), 4.91 (1H, t, *J* = 4.1 Hz), 4.32 (2H, s), 4.04 (2H, d, *J* = 4.1 Hz), 3.51 (3H, s); ¹³C-NMR (125 MHz, CDCl₃): 166.67, 150.11, 141.49, 137.28, 135.06, 129.02, 128.30, 128.00, 127.45, 127.29, 126.67, 110.60, 98.13, 59.88, 50.41, 48.07; HR-MS (ESI): calcd. for C₂₀H₁₉NO₂Na [M+Na]⁺ 328.1308, found 328.1311.

¹H-NMR and ¹³C-NMR spectra of the crude reaction mixture including the internal standard are shown in Figure **S35** and **S36**.

Dimethyl 1,1'-dibenzyl-1,1',6,6'-tetrahydro-[4,4'-bipyridine]-3,3'-dicarboxylate (2h)

A solution of *N*-propargylenamine **1h** (53.1 mg, 0.116 mmol) and [Cu(Xantphos)(MeCN)]PF₆(19.2 mg, 0.0232 mmol) in CH₂Cl₂ (1.2 ml) was stirred at r.t. for 3 h. The reaction mixture was then treated with 1,10-phenanthroline (4.18 mg, 0.0232 mmol) to deactivate the copper catalyst. After concentration *in vacuo*, 4-nitrobenzonitrile (17.9 mg, 0.121 mmol) was added. The yield of **2h** (75%) was calculated based on ¹H-NMR.

2h: TLC $R_f = 0.28$ (Hex:AcOEt = 1:1); ¹H-NMR (500 MHz, CDCl₃): δ 7.50 (2H, s), 7.39-7.27 (10H, m), 4.78 (2H, t, J = 3.5 Hz), 4.28 (2H, br-d, J = 14.8 Hz), 4.16 (2H, br-d, J = 14.8 Hz), 4.02 (2H, br-d, J = 14.2 Hz), 3.95 (2H, br-d, J = 14.2 Hz), 3.59 (6H, s); ¹³C-NMR (125 MHz, CDCl₃): 166.48, 147.83, 137.24, 135.39, 128.91, 128.08, 127.97, 108.67, 98.98, 59.96, 50.38, 48.17; HR-MS (ESI): calcd. for C₂₈H₂₈N₂O₄Na [M+Na]⁺ 479.1898, found 479.1871.

¹H-NMR and ¹³C-NMR spectra of the crude reaction mixture including the internal standard are shown in Figure **S37** and **S38**.

Methyl 1-benzyl-6,6-dimethyl-1,6-dihydropyridine-3-carboxylate (2i)

A solution of *N*-propargylenamine **1i** (47.0 mg, 0.183 mmol) and [Cu(Xantphos)(MeCN)]PF₆(15.7 mg, 0.0190 mmol) in 1,2-dichloroethane (1.8 ml) was stirred at 65 °C for 20 h. The reaction mixture was then treated with 1,10-phenanthroline (5.6 mg, 0.0311 mmol) to deactivate the copper catalyst. After concentration *in vacuo*, 4-nitrobenzonitrile (27.7 mg, 0.187 mmol) was added.-The yield of **2i** (99%) was calculated based on ¹H-NMR spectra. The crude mixture was purified by silica-gel chromatography to afford **2i** (40.5 mg, 0.157 mmol, 86%).

2i: TLC $R_f = 0.29$ (Hex:AcOEt = 4:1); ¹H-NMR (500 MHz, CDCl₃): δ 7.38-7.35 (2H, m), 7.31-7.25 (3H, m), 6.35 (1H, dd, J = 9.8, 1.3 Hz), 4.85 (1H, d, J = 9.8 Hz), 4.45 (2H, s), 3.68 (3H, s), 1.28 (6H, s); ¹³C NMR (125 MHz, CDCl₃): 167.11, 147.60, 138.74, 128.93, 127.69, 126.94, 120.46, 120.13, 97.70, 58.01, 53.35, 50.77, 28.59; HRMS (ESI, m/z): calcd. for C₁₆H₂₀NO₂ [M+H]⁺ 258.1489, found 258.1485.

¹H-NMR and ¹³C-NMR spectra of the crude reaction mixture including the internal standard are shown in Figure **S39** and **S40**.

Methyl 1-benzyl-4-methyl-2-phenyl-1,6-dihydropyridine-3-carboxylate (2j)

To a solution of *N*-propargylenamine **1j** (70.4 mg, 0.221 mmol) and [Cu(Xantphos)(MeCN)]PF₆ (18.3 mg, 0.022 mmol) in 1,2-dichloroethane (2.2 ml) was stirred at r.t. for 3 h. The reaction mixture was then treated with 1,10-phenanthroline (4.9 mg, 0.0272 mmol) to deactivate the copper catalyst. After concentration *in vacuo*, 4-nitrobenzonitrile (32.7 mg, 0.221 mmol) was added. Yield of **2j** (89%) was calculated based on ¹H-NMR.

2j: TLC $R_f = 0.50$ (Hex:AcOEt = 2:1); ¹H-NMR (500 MHz, CDCl₃): δ 7.36-7.16 (10H, m), 4.81-4.77 (1H, m), 4.11 (2H, s), 3.93-3.91 (2H, m), 3.22 (3H, s), 2.06-2.03 (3H, m); ¹³C-NMR (75 MHz, CDCl₃): 168.82, 156.49, 137.81, 136.83, 133.66, 128.85, 128.69, 128.58, 128.26, 127.38, 127.05, 106.83, 105.17, 55.21, 50.20, 48.85, 21.01.

¹H-NMR and ¹³C-NMR spectra of the crude reaction mixture including the internal standard are shown in Figure **S41** and **S42**.

Cu-catalyzed cyclization of a deuterium labeled N-propargylenamine

N-Benzylprop-2-yn-1-amine-d1 (S9)

To a solution of benzyl amine (2.34 ml, 21.4 mmol) in toluene (4.2 ml) was added 1-bromo-2-butyne (0.380 ml, 4.34 mmol) and stirred at r.t. for 14 h. After concentrated *in vacuo*, the residue was purified by silica-gel chromatography to afford **S6** (636 mg, 3.99 mmol, 92%). The amine **S6** (301 mg, 1.89 mmol) was then dissolved in CH₃OD (3.5 ml) and stirred at r.t. for 1 h, and after concentrated *in vacuo*, treated again with CH₃OD (3.0 ml) at r.t. for further 1 h. Removal of the solvent *in vacuo* afforded **S6-D** (240 mg, 1.50 mmol, 79%).

Methyl 1-benzyl-4-methyl-2-phenyl-1,6-dihydropyridine-3-carboxylate-5-d1 (2j-D)

To a solution of benzyl amine **S6-D** (274 mg, 1.71 mmol) in CD₃OD (1.6 ml) was added methyl 3-phenylpropiolate (0.260 ml, 1.76 mmol) and stirred at 70 °C for 10 h. After concentrated *in vacuo*, the residue was purified by silica-gel chromatography to afford **1j-D** (482 mg, 1.51 mmol, 88%). Deuterium incorporation (80%) at C3 proton was determined based on ¹H-NMR analysis.

A solution of *N*-propargylenamine **1j-D** (70.1 mg, 0.219 mmol) and $[Cu(Xantphos)(MeCN)]PF_6$ (18.3 mg, 0.0219 mmol) in dichloromethane (2.2 ml) was stirred at r.t. for 3 h. The reaction mixture was then treated with 1,10-phenanthroline (5.0 mg, 0.0277 mmol) to deactivate the copper catalyst.

After concentration *in vacuo*, 4-nitrobenzonitrile (32.4 mg, 0.219 mmol) was added as an internal standard. Yield of **2j-D** (83%) as well as percentage of deuteration of C5 proton (66%) were calculated based on ¹H-NMR.

¹H-NMR spectra of **1j-D** and the crude reaction mixture of **2j-D** including the internal standard are shown in Figure **S43** and **S44**.

References

[1] Kim, H. -S.; Kim, J. -W.; Kwon, S. -C.; Shim, S. -C., Kim, T. -J. J. Organomet. Chem., **1997**, 545-546, 337-344.

[2] Cain, M. F.; Hughes, R. P.; Glueck, D. S.; Golen, J. A.; Moore, C. E., Rheingold, A. L. *Inorg. Chem.* **2010**, *49*, 7650-7662.

[3] Eddy, N. A.; Morse, P. D.; Morton, M. D.; Fenteany, G. Synlett 2011, 699-701.

[4] Yoshida, M.; Mizuguchi, T.; Shishido, K. Chem. -Eur. J. 2012, 18, 15578-15581.

[5] Gabriele, B.; Plastina, P.; Salerno, G.; Mancuso, R.; Costa, M. Org. Lett. 2007, 9, 3319-3322.

The ¹H, ¹³C-NMR spectra of synthetic compounds.

Figure S1. A ¹H-NMR spectrum of 4 in CDCl₃.

Figure S2. A ¹³C-NMR spectrum of 4 in CDCl₃.

Figure S3. A ¹H-NMR spectrum of 1a in CDCl₃.

Figure S4. A ¹³C-NMR spectrum of 1a in CDCl₃.

Figure S5. A ¹H-NMR spectrum of 1b in CDCl₃.

Figure S6. A ¹³C-NMR spectrum of 1b in CDCl₃.

Figure S7. A ¹H-NMR spectrum of 1c in CDCl₃.

Figure S8. A ¹³C-NMR spectrum of 1c in CDCl₃.

Figure S9. A ¹H-NMR spectrum of 1d in CDCl₃.

Figure S10. A ¹³C-NMR spectrum of 1d in CDCl₃.

Figure S11. A ¹H-NMR spectrum of 1e in CDCl₃.

Figure S12. A ¹³C-NMR spectrum of 1e in CDCl₃.

Figure S13. A ¹H-NMR spectrum of 1f in CDCl₃.

Figure S14. A ¹³C-NMR spectrum of 1f in CDCl₃.

Figure S15. A ¹H-NMR spectrum of 1g in CDCl₃.

Figure S16. A ¹³C-NMR spectrum of 1g in CDCl₃.

Figure S17. A ¹H-NMR spectrum of 1h in CDCl₃.

Figure S18. A ¹³C-NMR spectrum of 1h in CDCl₃.

Figure S19. A ¹H-NMR spectrum of 1i in CDCl₃.

Figure S20. A ¹³C-NMR spectrum of 1i in CDCl₃.

Figure S21. A ¹H-NMR spectrum of 1j in CDCl_{3.}

Figure S22. A ¹³C-NMR spectrum of 1j in CDCl₃.

Figure S23. A ¹H-NMR spectrum for the crude mixture of 2a in CDCl_{3.}

Figure S24. A ¹³C-NMR spectrum for the crude mixture of 2a in CDCl₃.

Figure S25. A ¹H-NMR spectrum for the crude mixture of 2b in CDCl₃.

Figure S26. A ¹³C-NMR spectrum for the crude mixture of 2b in CDCl₃.

Figure S27. A ¹H-NMR spectrum for the crude mixture of 2c in CDCl₃.

Figure S28. A ¹³C-NMR spectrum for the crude mixture of 2c in CDCl₃.

Figure S29. A ¹H-NMR spectrum for the crude mixture of 2d in $CDCl_{3.}$

Figure S30. A ¹³C-NMR spectrum for the crude mixture of 2d in CDCl₃.

Figure S31. A ¹H-NMR spectrum for the crude mixture of 2e in CDCl_{3.}

Figure S32. A ¹³C-NMR spectrum for the crude mixture of 2e in CDCl₃.

Figure S33. A ¹H-NMR spectrum for the crude mixture of 2f in CDCl₃.

Figure S34. A ¹³C-NMR spectrum for the crude mixture of 2f in CDCl₃.

Figure S35. A ¹H-NMR spectrum for the crude mixture of 2g in CDCl_{3.}

Figure S36. A ¹³C-NMR spectrum for the crude mixture of 2g in CDCl₃.

Figure S37. A ¹H-NMR spectrum for the crude mixture of 2h in CDCl_{3.}

Figure S38. A ¹³C-NMR spectrum for the crude mixture of 2h in CDCl₃.

Figure S39. A ¹H-NMR spectrum of 2i in CDCl₃.

Figure S40. A ¹³C-NMR spectrum of 2i in CDCl₃.

Figure S41. A ¹H-NMR spectrum for the crude mixture of 2j in CDCl_{3.}

Figure S42. A ¹³C-NMR spectrum for the crude mixture of 2j in CDCl₃.

Figure S43. A ¹H-NMR spectrum of 1j-D in CDCl_{3.}

Figure S44. A ¹H-NMR spectrum for the crude mixture of 2j-D in CDCl_{3.}

Figure S45. A ¹H-NMR spectrum of 4-nitrobenzonitrile in CDCl_{3.}

Figure S46. A ¹³C-NMR spectrum of 4-nitrobenzonitrile in CDCl₃.