Supporting Information

Stereogenic α-carbons determine the planar chirality of [13]-macrodilactones

Anniefer N. Magpusao, Kelli Rutledge, Brandon Q. Mercado, Mark W. Peczuh* Department of Chemistry, University of Connecticut, 55 North Eagleville Road, U-3060, Storrs, CT 06269 Department of Chemistry, Yale University, 225 Prospect Street, New Haven, CT 06520

Item	Page(s)
Figure S1. Overlays of [13]-macrodilactones and macrocycle 1.	S2
Figure S2. Top (triangular shape) and side (ribbon shape) views of macrocycle 1 planar	63
enantiomers.	
Figure S3. Top (triangle) and side (ribbon) views of macrocycle 2 planar enantiomers.	S4
Figure S4. Top (triangle) and side (ribbon) views of macrocycle 6 planar enantiomers.	S5
Figure S5. Top (triangle) and side (ribbon) views of macrocycle 7 planar enantiomers.	S6
Table S1. Chiral HPLC integration data	S7
Figure S6. Chiral HPLC profiles. (Same as Figure 4 in main text)	S7
Procedure for determination of RMSDs	S8
General Experimental Procedures	S9-10
Characterization Data for new compounds	S11-S14
¹ H and ¹³ C spectra of new compounds:	S15-S24
3-hydroxypropyl 4-pentenoate	S15
rac-3	S16
S-3	S17
rac-4	S18
7S,pR- 4	S19
rac-5	S20
7S,p R-5	S21
S1	S22
6	S23
7	S24
X-Ray Crystallographic Data on 4, 6, and 7	S25-S67

Total Pages: 67

Overlay of *R*,p*R* **1** and *S*, p*R* **4** (RMSD 0.0454) showing common [13]-macro-dilactone structure.

overlay of 1 and trans - 7R, 12R, pS - 6; RMSD = 0.0642

overlay of 1 and cis – 7S, 12R, pR – 7 RMSD = 0.49

Figure S1. Overlays.

Figure S2. Top (triangular shape) and side (ribbon shape) views of macrocycle **1** planar enantiomers.

Figure S3. Top (triangular shape) and side (ribbon shape) views of macrocycle **2** planar enantiomers.

Figure S4. Top (triangular shape) and side (ribbon shape) views of macrocycle **6** planar enantiomers.

Figure S5. Top (triangular shape) and side (ribbon shape) views of macrocycle **7** planar enantiomers.

Compound	Enantiomeric ratio: Area% (Area)	
Rac-4	49.90 (2465392)	50.10 (2475148)
7s, pR- 4	21.13 (2614785)	78.87 (9762330)
Rac- 5	47.36 (708771)	52.64 (787739)
7s, pR- 5	21.77 (675305)	78.23 (2427390)

Table S1. Chiral HPLC integration data

Figure S6. (Note: This figure is a the same as Figure 4 in the main text. It is added here for reference.) Chiral HPLC profiles of racemic (pink) and chiral (blue) C12-phenyl [13]-macrodilactone **3** and their corresponding epoxides **4** upon DMDO epoxidation.

Procedure for determination of RMSDs

The root mean square deviations (RMSDs) were produced with the structure overlay feature of the Mercury software package. Pairs of atoms were selected to calculate the square root of the mean square differences between atomic coordinates. Our approach focused on the 13 atoms of the macrocycle in compound **1**. These coordinates were mapped onto the corresponding atom positions of compounds **4**, **6**, and **7**. All of the compounds reported here crystallized as racemic mixtures. The coordinates were carefully inspected to insure the average RMSD between two sets of coordinates reflected corresponding conformations in the alkene and ester functional groups.

Experimental Procedures

General

Reactions were monitored using TLC. UV light, *p*-anisaldehyde, potassium permanganate (KMnO₄) or ceric ammonium molybdate (CAM) solutions were used for visualization. Chromatography was performed on silica gel and solvent systems used were based on the R_f values. ¹H NMR spectra (400 MHz) were referenced to CDCl₃ ($\delta_{\rm H}$ 7.27 ppm) and ¹³CNMR spectra (100 MHz) were referenced to CDCl₃ ($\delta_{\rm C}$ 77.23 ppm).

Sequential Acylations

Method A:

Dicyclohexylcarbodiimide (DCC) (1.09 mmol) and N,N-dimethylaminopyridine (DMAP) (0.3 mmol) in DCM (7 mL) were stirred at 0 °C. 4-pentenoic acid (1 mmol) was added and the mixture was stirred at the same temperature for 30 minutes until a white suspension was observed in the flask. 1,3-propanediol (1 mmol) in DCM (3 mL) was then added to the reaction mixture and stirred overnight at room temperature. The mixture was filtered through a celite and solvent was removed from the filtrate under reduced pressure. The crude residue was purified by silica gel column chromatography (3:1 Hex:EtOAc) to give the monoacylated product.

Method B:

DCC (1.09 mmol) and DMAP (0.3 mmol) were added in DCM (40 mL) and cooled to 0°C. The acid of choice (either rac-2 or S-2, 1 mmol) was added to the solution and stirred at the same temperature for 30 minutes. The monoacylated product (1 mmol) from the first acylation was then added to the mixture and stirred overnight at room temperature. The reaction mixture was filtered through celite and and the DCM of the filtrate was removed under reduced pressure. Crude residue was purified by silica gel column chromatography to give the diene.

One-pot acylation

In a round bottom flask, DCC (0.23 g, 1.09 mmol) and DMAP (.037 g, 0.300 mmol) were dissolved in DCM (40mL), and the solution was cooled to 0°C. Rac-2 (1.00 mmol) was added and stirred at the same temperature for 30 minutes. 1,3-propanediol (0.500 mmol) in DCM (10 mL) was then added to the mixture and stirred overnight at room temperature. The mixture was then filtered through celite. The solvent of the filtrate was removed under reduced pressure and the residue was purified by silica gel column chromatography to get the diene.

Ring Closing Metathesis

Grubbs' second-generation catalyst (0.050 mmol) was added to a solution of the diene in toluene (100 mL). The mixture was heated to reflux at 110 °C overnight. The toluene was removed under reduced pressure and the crude product was purified by column chromatography.

DMDO Epoxidation (Lee, D.; Sello, J. K.; Schreiber S. L. J. Am. Chem. Soc. **1999**, 121, 10648-10649)

Excess amount of NaHCO₃ (0.450 g, 0.94 mmol) and Oxone (0.450 g, 0.19 mmol) was added to a solution of macrocycle **4** (racemic or chiral) (75 mg) in acetone:H₂O:DCM (1:1:1, 15 mL) at 0 °C. The resulting heterogeneous mixture was stirred for 3 h at 0 °C and extracted with DCM. The epoxide was purified using column chromatography.

3-hydroxypropyl 4-pentenoate. The synthesis of this compound followed the general monoacylation procedure (Method A) to give 3-hydroxypropyl 4-pentenoate in 52% yield as a colorless oil (1.0 mmol scale). R_f 0.2 (30% EtOAc:Hex); ¹HNMR (CDCl₃) 400 MHz. δ 5.82 (ddd, 1H, *J*= 10.4, 6.3, 6.3, 6.3 Hz), 5.08 (dd, 1H, *J* = 16.6, 16.6, 0 Hz), 5.02 (dd, 1H, *J*= 10.2, 10.2, 0 Hz), 4.25 (t, 2H, *J* = 6.1 Hz), 3.69 (m 2H), 2.80 (s, 1H), 2.41 (m, 4H), 1.88 (qn, 2H, *J* = 6.1 Hz); ¹³C NMR (CDCl₃) 100 MHz δ 173.6, 136.6, 115.6, 61.5, 59.0, 33.6, 31.7, 28.9; TOF HRMS (ESI) *m/z* calcd for C₈H₁₄O₃ (M+Na)⁺ 181.0841, found 181.0838.

rac-3. The synthesis of this compound followed the general method of dienes through monoacylation (Method B) in 50% yield and as a clear yellowish oil (0.63 mmol). $R_f 0.6$ (20% EtOAc:Hex); ¹HNMR (CDCl₃) 400 MHz. δ 7.33 (m, 4H), 7.28 (m, 1H), 5.83 (m, 1H), 5.74 (dddd/ddt, 1H, *J*= 17.0, 10.3, 6.7, 6.7), 5.08 (m, 2H), 5.01 (dd, 2H, *J*= 10.4, 5.0), 4.16 (ddd, 2H, *J*= 17.5, 11.34, 6.3), 4.08 (m, 2H), 3.66 (dd, 1H, *J*= 8.5, 7.1), 2.85 (ddd, 1H, *J*= 14.8, 8.2, 8.2), 2.54 (ddd, 1H, *J*= 13.8, 6.8, 6.8), 2.39 (ddd, 4H, *J*= 15.5, 11.35, 4.17), 1.93 (dddd/dq, 2H, *J*= 6.48, 6.48, 6.48, 6.48); ¹³C NMR (CDCl₃) 100 MHz δ 173.5, 173.1, 138.7, 136.8, 135.4, 128.9, 128.1, 127.6, 117.3, 115.8, 61.5, 61.0, 51.7, 37.7, 33.7, 29.1, 28.1; TOF HRMS (DART) *m/z* calcd for C₁₉H₂₄O₄ (M+H)⁺ 317.1753, found 317.1732.

S-3. Followed the general method of dienes through monoacylation (method A and then method B) in 75% yield as a yellowish oil (0.79 mmol). R_f 0.6 (20% EtOAc:Hex); $[\alpha]_D$ +257.4° (c 1.0, CH₂Cl₂);¹HNMR (CDCl₃) 400 MHz. δ 7.30 (m, 5H), 5.80 (m, 2H), 5.08 (m, 2H), 5.02 (dd, 2H, *J*=10.3, 4.9), 4.16 (ddd, 2H, *J*= 17.57, 11.09, 6.31), 4.07 (m, 2H), 3.66(dd, 1H, *J*= 8.5, 7.0), 2.84 (ddd, 1H, *J*=

15.01, 8.07, 8.07), 2.54 (ddd, 1H, J= 13.64, 6.74, 6.74), 2.38 (ddd, 4H, J= 14.71, 11.34, 4.35), 1.92 (ddd/dq, 2H, J= 6.37, 6.37, 6.37, 6.37); ¹³C NMR (CDCl₃) 100 MHz δ 173.5, 173.1, 138.7, 136.8, 135.4, 128.8, 128.1, 127.6, 117.2, 115.7, 61.5, 61.0, 51.7, 37.6, 33.7, 29.0, 28.1; TOF HRMS (ESI) m/z calcd for C₁₉H₂₄O₄ (M+Na)⁺ 339.1572, found 339.1556.

rac-4. Followed the general RCM method to give the product in 54% yield and as a white crystalline solid (0.61 mmol). m.p. 78-79 °C; R_f 0.4 (20% EtOAc:Hex); ¹HNMR (CDCl₃) 400 MHz. δ 7.37 (d, 2H, J= 7.1), 7.31 (dd, 2H, J= 7.1, 7.1), 7.26 (dd, 1H, J= 3.1, 3.1), 5.55 (m, 2H), 4.54 (m, 1H), 4.44 (m, 1H), 4.01 (ddd/dt, 1H, J= 8.2, 4.1, 4.1), 3.83 (ddd/dt, 1H, J= 8.2, 4.1, 4.1), 3.60 (dd, 1H, J= 12.6, 2.7), 2.77 (ddd/dt, 1H, J= 12.9, 12.0, 8.1), 2.35 (m, 5H), 2.03 (m, 2H); ¹³C NMR (CDCl₃) 100 MHz δ 174.2, 173.9, 139.1, 131.1, 129.1, 128.9, 127.9, 127.6, 60.6, 60.4, 52.1, 37.9, 34.3, 28.8, 26.0; TOF HRMS (ESI) *m/z* calcd for C₁₇H₂₀O₄ (M+Na)⁺ 311.1259, found 311.1256; anal. for C₁₇H₂₀O₄, C 70.78, H 6.96, O 22.26, found C 70.86, H 6.96.

7S,pR-4. Followed the general method of RCM on a (1.14 mmol) scale to give *7S,pR-4* in 25% yield as a white solid. m.p. 72-74 °C; [α]_D +2.6° (c 1.0, CH₂Cl₂); R_f 0.4 (20% EtOAc:Hex); ¹HNMR (CDCl₃) 400 MHz. δ 7.39 (d, 2H, *J*= 7.2), 7.23 (dd, 2H, *J*= 7.2, 7.2), 7.26 (m, 1H), 5.56 (m, 2H), 4.54 (m, 1H), 4.46 (m, 1H), 4.04 (ddd/dt, 1H, *J*= 8.4, 4.0, 4.0), 3.86 (ddd/dt, 1H, *J*= 8.4, 4.0, 4.0), 3.62 (dd, 1H, *J*= 12.6, 2.9), 2.79 (ddd/dt, 1H, *J*= 12.9, 12.9, 8.2), 2.37 (m, 5H), 2.05 (m, 2H);); ¹³C NMR (CDCl₃) 100 MHz δ 174.1, 173.9, 139.0, 131.0, 129.0, 128.8, 127.9, 127.6, 60.6, 60.4, 52.0, 37.9, 34.3, 28.7, 26.0; TOF HRMS (ESI) *m/z* calcd for $C_{17}H_{20}O_4$ (M+Na)⁺ 311.1259, found 311.1253.

rac-5. Compound *rac-4* was epoxidized using a procedure for in situ generation of DMDO as described to give *rac-5* in 64% yield (0.26 mmol) as a white solid. m.p. 100-102 °C; $R_f 0.2$ (20% EtOAc:Hex); ¹HNMR (CDCl₃) 400 MHz. δ 7.30 (m, 5H), 4.82 (m, 2H), 3.91 (ddd/dt, 1H, *J*= 8.1, 3.7, 3.7), 3.72 (m, 2H), 2.87 (ddd, 2H, *J*= 8.8, 8.8, 2.6), 2.47 (dd, 2H, *J*= 8.24, 5.04), 2.24 (m, 2H), 2.03 (m, 3H), 1.60 (m, 1H); ¹³C NMR (CDCl₃) 100 MHz δ 173.4, 172.9, 139.1, 129.0, 127.7, 127.6, 60.2, 59.5, 58.5, 57.6, 47.8, 36.7, 29.6, 26.9, 26.3; TOF HRMS (ESI) *m/z* calcd for C₁₇H₂₀O₅ (M+Na)⁺ 327.1208, found 327.1206.

7*S*,*pR* -5. Compound 7*S*,*pR*-4 was epoxidized using a procedure for in situ generation of DMDO as described to give 7*S*,*pR*-5 in 67% yield and as a white solid (0.25 mmol). mp 114-118 °C; [α]_D +120.3° (c 1.0, CH₂Cl₂); R_f 0.2 (20% EtOAc:Hex); ¹HNMR (CDCl₃) 400 MHz. δ 7.29 (m, 5H), 4.83 (m, 2H), 3.92 (ddd/dt, 1 H, *J*= 8.2, 4.3, 4.3), 3.73 (m, 2H), 2.87 (ddd, 2H, *J*= 8.8, 8.8, 2.6), 2.47 (dd, 2H, *J*= 8.2, 5.3), 2.25 (m, 2H), 2.06 (m, 2H), 2.00 (ddd/dt, 1H, *J*= 12.9, 9.6, 9.6), 1.61 (m, 1H); ¹³C NMR (CDCl₃) 100 MHz δ 173.4, 172.9, 139.1, 129.1, 127.7, 127.6, 60.2, 59.5, 58.5, 57.6, 47.8, 36.7, 29.6, 26.9, 26.3; TOF HRMS (ESI) *m/z* calcd for C₁₇H₂₀O₅ (M+Na)⁺ 327.1208, found 327.1216.

S1. Followed the general procedure of diene through diacylation in 46% yield and clear yellowish oil (2.55 mmol). $R_f 0.8$ (20% EtOAc:Hex); ¹HNMR (CDCl₃) 400 MHz. δ 7.22 (m, 10H), 5.63 (dddd/dt, 2H, J= 17.3, 10.3, 7.0, 7.0), 5.00 (dd, 2H, J= 17.1, 1.3), 4.92 (dd, 2H, J= 10.2, 0), 3.96 (m, 4H), 3.54 (dd, 2H, J= 7.9, 7.9), 2.73 (ddd, 2H, J= 14.58, 8.05, 8.05), 2.43 (ddd, 2H, J= 13.93, 6.75, 6.75), 1.77 (dddd/tt, 2H, S 12

J= 6.13, 6.13, 6.13, 6.13); ¹³C NMR (CDCl₃) 100 MHz δ 173.5, 138.7, 135.4, 128.9, 128.1, 127.6, 117.3, 61.3, 51.7, 37.7, 28.1; TOF HRMS (ESI) m/z calcd for C₂₅H₂₈O₄ (M+Na)⁺ 415.1885, found 415.1911.

6. Obtained using the general RCM procedure in 47% yield (0.45 mmol) as a white solid. m.p. 172-174 °C; $R_f 0.56$ (20% EtOAc:Hex); ¹HNMR (CDCl₃) 400 MHz. δ 7.33 (m, 10H), 5.64 (ddd/dt, 2H, *J*= 3.67, 3.67, 0), 4.67 (m, 2H), 3.80 (ddd/dt, 2H, *J*= 7.09, 3.17, 3.17), 3.62 (dd, 2H, *J*= 12.50, 2.14), 2.82 (m, 2H), 2.28 (dd, 2H, *J*= 12.62, 0), 2.03 (m, 2H); ¹³C NMR (CDCl₃) 100 MHz δ 174.1, 139.0, 130.3, 128.9, 127.8, 127.6, 59.7, 51.8, 38.1, 25.5; TOF HRMS (DART) m/z calcd for $C_{23}H_{24}O_4$ (M+H)⁺ 365.1753, found 365.1749

7. Obtained in the same RCM reaction as **6** in 20% yield (0.19 mmol) as a white solid. m.p. 147-156 °C; R_f 0.44 (20% EtOAc:Hex); ¹HNMR (CDCl₃) 400 MHz. δ 7.33 (m, 10 H), 5.74 (ddd, 2H, *J*= 2.84, 2.84, 0), 4.41 (ddd, 2H, *J*= 11.37, 5.71, 5.71), 4.09 (ddd, 2H, *J*= 10.93, 5.15, 5.15), 3.75 (ddd, 2H, *J*= 12.17, 3.31, 0), 2.78 (m, 2H), 2.40 (dd, 2H, *J*= 13.57, 0), 2.08 (dddd/dq, 2H, *J*= 5.20, 5.20, 5.20, 5.20); ¹³C NMR (CDCl₃) 100 MHz δ 174.1, 139.1, 129.7, 128.9, 128.1, 127.7, 63.1, 52.4, 36.9, 27.3; TOF HRMS (DART) m/z calcd for C₂₃H₂₄O₄ (M+H)⁺ 365.1753, found 365.1748.

X-ray Crystallography

Experimental and Refinement Details

Low-temperature diffraction data (ω -scans) were collected on a Rigaku R-AXIS RAPID diffractometer coupled to an R-AXIS RAPID imaging plate detector with Mo Ka radiation ($\lambda = 0.71073$ Å) for the structure of 6, and on a Rigaku MicroMax-007HF diffractometer coupled to a Saturn994+ CCD detector with Cu $K\alpha$ ($\lambda = 1.54178$ Å) for the structures of 4, and 7. All structures were solved by direct methods using SHELXT and refined against F^2 on all data by full-matrix least squares with SHELXL. (Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122) All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included in the model at geometrically calculated positions and refined using a riding model. The isotropic displacement parameters of all hydrogen atoms were fixed to 1.2 times the U value of the atoms to which they are linked (1.5 times for methyl groups). All root mean square deviations were calculated by mapping the 13 atomic coordinates of the macrocycle contained in CCDC 686767 (mp09) onto the coordinates reported in this manuscript. Full details of the X-ray structure determination are in the CIF included as Supporting Information. CCDC numbers 1041906 (4), 1041908 (6), and 141907 (7) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data request/cif.

Figure 1. The full numbering scheme of compound **4**. All atoms shown are depicted with 50% thermal contours.

Identification code	compound 4	
Empirical formula	$C_{17}H_{20}O_4$	
Formula weight	288.33	
Temperature	93(2) K	
Wavelength	1.54187 Å	
Crystal system	Triclinic	
Space group	$P\overline{1}$	
Unit cell dimensions	a = 5.51640(10) Å	$\alpha = 94.989(7)^{\circ}$
	b = 11.8803(3) Å	$\beta = 90.739(6)^{\circ}$
	c = 23.3669(16) Å	$\gamma = 98.520(7)^{\circ}$
Volume	1508.23(12) Å ³	
Z	4	
Density (calculated)	1.270 Mg/m ³	
Absorption coefficient	0.731 mm ⁻¹	
F(000)	616	
Crystal color	Colorless	
Crystal size	$0.200 \ x \ 0.200 \ x \ 0.050 \ mm^3$	
Θ range for data collection	1.899 to 68.240°	
Index ranges	$-6 \le h \le 6, -14 \le k \le 14, -2$	$28 \leq l \leq 28$
Reflections collected	54047	
Independent reflections	5407 [R(int) = 0.0459]	
Completeness to $\theta = 67.687^{\circ}$	98.3 %	
Absorption correction	Semi-empirical from equivalen	its
Max. and min. transmission	0.964 and 0.802	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	5407 / 0 / 379	
Goodness-of-fit on F ²	1.054	
Final R indices [I> 2σ (I) = 4987 data]	R1 = 0.0391, wR2 = 0.0948	
R indices (all data)	R1 = 0.0421, wR2 = 0.0973	
Largest diff. peak and hole	0.446 and -0.216 e.Å ⁻³	

Table 1. Crystal data and structure refinement for compound 4.

	Х	у	Z	U(eq)
O(1A)	2890(2)	5630(1)	2852(1)	26(1)
C(2A)	5093(3)	6222(1)	2611(1)	30(1)
C(3A)	4295(3)	7045(1)	2212(1)	31(1)
C(4A)	2579(3)	7802(1)	2492(1)	29(1)
O(5A)	3674(2)	8265(1)	3047(1)	26(1)
C(6A)	2149(3)	8457(1)	3475(1)	22(1)
C(7A)	3569(3)	8830(1)	4040(1)	22(1)
C(8A)	2168(3)	8258(1)	4528(1)	25(1)
C(9A)	2282(3)	6996(1)	4480(1)	26(1)
C(10A)	476(3)	6191(1)	4286(1)	26(1)
C(11A)	690(3)	4945(1)	4201(1)	27(1)
C(12A)	877(3)	4547(1)	3561(1)	26(1)
C(13A)	3239(3)	5098(1)	3325(1)	25(1)
O(14A)	5241(2)	5075(1)	3534(1)	37(1)
O(15A)	-48(2)	8372(1)	3414(1)	28(1)
C(16A)	3984(3)	10129(1)	4108(1)	21(1)
C(17A)	2311(3)	10759(1)	4377(1)	24(1)
C(18A)	2683(3)	11949(1)	4398(1)	25(1)
C(19A)	4718(3)	12516(1)	4145(1)	26(1)
C(20A)	6390(3)	11892(1)	3880(1)	27(1)
C(21A)	6037(3)	10709(1)	3865(1)	24(1)
O(1B)	10678(2)	2699(1)	2376(1)	27(1)
C(2B)	12600(3)	2024(1)	2488(1)	29(1)
C(3B)	11459(3)	1023(1)	2803(1)	29(1)
C(4B)	9120(3)	389(1)	2513(1)	28(1)
O(5B)	9721(2)	118(1)	1918(1)	28(1)
C(6B)	7874(3)	-102(1)	1535(1)	25(1)
C(7B)	8842(3)	-228(1)	929(1)	28(1)
C(8B)	7598(3)	541(1)	561(1)	30(1)
C(9B)	8547(3)	1786(1)	723(1)	30(1)
C(10B)	7354(3)	2499(1)	1030(1)	27(1)

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for compound 4. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(11B)	8287(3)	3737(1)	1192(1)	26(1)
C(12B)	8983(3)	4002(1)	1834(1)	25(1)
C(13B)	11170(3)	3455(1)	1979(1)	25(1)
O(14B)	13138(2)	3642(1)	1761(1)	34(1)
O(15B)	5737(2)	-189(1)	1657(1)	35(1)
C(16B)	8471(3)	-1488(1)	715(1)	26(1)
C(17B)	6467(3)	-2013(1)	375(1)	29(1)
C(18B)	6247(3)	-3163(1)	186(1)	32(1)
C(19B)	8010(3)	-3806(1)	340(1)	34(1)
C(20B)	9987(3)	-3298(1)	683(1)	35(1)
C(21B)	10230(3)	-2148(1)	868(1)	31(1)

O(1A)-C(13A)	1.3441(18)
O(1A)-C(2A)	1.4570(17)
C(2A)-C(3A)	1.515(2)
C(2A)-H(2AA)	0.9900
C(2A)-H(2AB)	0.9900
C(3A)-C(4A)	1.516(2)
C(3A)-H(3AA)	0.9900
C(3A)-H(3AB)	0.9900
C(4A)-O(5A)	1.4526(17)
C(4A)-H(4AA)	0.9900
C(4A)-H(4AB)	0.9900
O(5A)-C(6A)	1.3399(17)
C(6A)-O(15A)	1.2066(17)
C(6A)-C(7A)	1.5242(19)
C(7A)-C(16A)	1.5203(19)
C(7A)-C(8A)	1.5368(19)
C(7A)-H(7A)	1.0000
C(8A)-C(9A)	1.5042(19)
C(8A)-H(8AA)	0.9900
C(8A)-H(8AB)	0.9900
C(9A)-C(10A)	1.321(2)
С(9А)-Н(9А)	0.9500
C(10A)-C(11A)	1.499(2)
C(10A)-H(10A)	0.9500
C(11A)-C(12A)	1.538(2)
C(11A)-H(11A)	0.9900
C(11A)-H(11B)	0.9900
C(12A)-C(13A)	1.503(2)
C(12A)-H(12A)	0.9900
C(12A)-H(12B)	0.9900
C(13A)-O(14A)	1.2073(18)
C(16A)-C(21A)	1.390(2)
C(16A)-C(17A)	1.395(2)
C(17A)-C(18A)	1.394(2)

Table 3. Bond lengths [Å] and angles [°] for compound 4.

C(17A)-H(17A)	0.9500
C(18A)-C(19A)	1.388(2)
C(18A)-H(18A)	0.9500
C(19A)-C(20A)	1.385(2)
С(19А)-Н(19А)	0.9500
C(20A)-C(21A)	1.387(2)
C(20A)-H(20A)	0.9500
C(21A)-H(21A)	0.9500
O(1B)-C(13B)	1.3477(18)
O(1B)-C(2B)	1.4550(17)
C(2B)-C(3B)	1.515(2)
C(2B)-H(2BA)	0.9900
C(2B)-H(2BB)	0.9900
C(3B)-C(4B)	1.514(2)
C(3B)-H(3BA)	0.9900
C(3B)-H(3BB)	0.9900
C(4B)-O(5B)	1.4524(17)
C(4B)-H(4BA)	0.9900
C(4B)-H(4BB)	0.9900
O(5B)-C(6B)	1.3279(18)
C(6B)-O(15B)	1.2077(18)
C(6B)-C(7B)	1.523(2)
C(7B)-C(16B)	1.519(2)
C(7B)-C(8B)	1.534(2)
C(7B)-H(7B)	1.0000
C(8B)-C(9B)	1.508(2)
C(8B)-H(8BA)	0.9900
C(8B)-H(8BB)	0.9900
C(9B)-C(10B)	1.318(2)
C(9B)-H(9B)	0.9500
C(10B)-C(11B)	1.498(2)
C(10B)-H(10B)	0.9500
C(11B)-C(12B)	1.538(2)
C(11B)-H(11C)	0.9900
C(11B)-H(11D)	0.9900
C(12B)-C(13B)	1.5007(19)

C(12B)-H(12C)	0.9900
C(12B)-H(12D)	0.9900
C(13B)-O(14B)	1.2047(18)
C(16B)-C(17B)	1.390(2)
C(16B)-C(21B)	1.397(2)
C(17B)-C(18B)	1.386(2)
C(17B)-H(17B)	0.9500
C(18B)-C(19B)	1.385(2)
C(18B)-H(18B)	0.9500
C(19B)-C(20B)	1.376(2)
C(19B)-H(19B)	0.9500
C(20B)-C(21B)	1.382(2)
C(20B)-H(20B)	0.9500
C(21B)-H(21B)	0.9500
C(13A)-O(1A)-C(2A)	115.83(11)
O(1A)-C(2A)-C(3A)	107.49(12)
O(1A)-C(2A)-H(2AA)	110.2
C(3A)-C(2A)-H(2AA)	110.2
O(1A)-C(2A)-H(2AB)	110.2
C(3A)-C(2A)-H(2AB)	110.2
H(2AA)-C(2A)-H(2AB)	108.5
C(2A)-C(3A)-C(4A)	112.86(12)
C(2A)-C(3A)-H(3AA)	109.0
C(4A)-C(3A)-H(3AA)	109.0
C(2A)-C(3A)-H(3AB)	109.0
C(4A)-C(3A)-H(3AB)	109.0
H(3AA)-C(3A)-H(3AB)	107.8
O(5A)-C(4A)-C(3A)	107.07(12)
O(5A)-C(4A)-H(4AA)	110.3
C(3A)-C(4A)-H(4AA)	110.3
O(5A)-C(4A)-H(4AB)	110.3
C(3A)-C(4A)-H(4AB)	110.3
H(4AA)-C(4A)-H(4AB)	108.6
C(6A)-O(5A)-C(4A)	117.36(11)
O(15A)-C(6A)-O(5A)	124.24(13)

O(15A)-C(6A)-C(7A)	124.81(13)
O(5A)-C(6A)-C(7A)	110.93(12)
C(16A)-C(7A)-C(6A)	107.31(11)
C(16A)-C(7A)-C(8A)	115.09(11)
C(6A)-C(7A)-C(8A)	109.07(11)
C(16A)-C(7A)-H(7A)	108.4
C(6A)-C(7A)-H(7A)	108.4
C(8A)-C(7A)-H(7A)	108.4
C(9A)-C(8A)-C(7A)	110.71(12)
C(9A)-C(8A)-H(8AA)	109.5
C(7A)-C(8A)-H(8AA)	109.5
C(9A)-C(8A)-H(8AB)	109.5
C(7A)-C(8A)-H(8AB)	109.5
H(8AA)-C(8A)-H(8AB)	108.1
C(10A)-C(9A)-C(8A)	124.99(14)
C(10A)-C(9A)-H(9A)	117.5
C(8A)-C(9A)-H(9A)	117.5
C(9A)-C(10A)-C(11A)	124.11(14)
C(9A)-C(10A)-H(10A)	117.9
C(11A)-C(10A)-H(10A)	117.9
C(10A)-C(11A)-C(12A)	111.43(12)
C(10A)-C(11A)-H(11A)	109.3
C(12A)-C(11A)-H(11A)	109.3
C(10A)-C(11A)-H(11B)	109.3
C(12A)-C(11A)-H(11B)	109.3
H(11A)-C(11A)-H(11B)	108.0
C(13A)-C(12A)-C(11A)	110.75(12)
C(13A)-C(12A)-H(12A)	109.5
C(11A)-C(12A)-H(12A)	109.5
С(13А)-С(12А)-Н(12В)	109.5
C(11A)-C(12A)-H(12B)	109.5
H(12A)-C(12A)-H(12B)	108.1
O(14A)-C(13A)-O(1A)	123.11(14)
O(14A)-C(13A)-C(12A)	124.20(13)
O(1A)-C(13A)-C(12A)	112.69(12)
C(21A)-C(16A)-C(17A)	118.81(13)

C(21A)-C(16A)-C(7A)	118.73(12)
C(17A)-C(16A)-C(7A)	122.36(12)
C(18A)-C(17A)-C(16A)	120.55(13)
C(18A)-C(17A)-H(17A)	119.7
C(16A)-C(17A)-H(17A)	119.7
C(19A)-C(18A)-C(17A)	120.04(13)
C(19A)-C(18A)-H(18A)	120.0
C(17A)-C(18A)-H(18A)	120.0
C(20A)-C(19A)-C(18A)	119.51(13)
С(20А)-С(19А)-Н(19А)	120.2
С(18А)-С(19А)-Н(19А)	120.2
C(19A)-C(20A)-C(21A)	120.54(13)
C(19A)-C(20A)-H(20A)	119.7
C(21A)-C(20A)-H(20A)	119.7
C(20A)-C(21A)-C(16A)	120.55(13)
C(20A)-C(21A)-H(21A)	119.7
C(16A)-C(21A)-H(21A)	119.7
C(13B)-O(1B)-C(2B)	115.93(11)
O(1B)-C(2B)-C(3B)	107.47(12)
O(1B)-C(2B)-H(2BA)	110.2
C(3B)-C(2B)-H(2BA)	110.2
O(1B)-C(2B)-H(2BB)	110.2
C(3B)-C(2B)-H(2BB)	110.2
H(2BA)-C(2B)-H(2BB)	108.5
C(4B)-C(3B)-C(2B)	113.01(12)
C(4B)-C(3B)-H(3BA)	109.0
C(2B)-C(3B)-H(3BA)	109.0
C(4B)-C(3B)-H(3BB)	109.0
C(2B)-C(3B)-H(3BB)	109.0
H(3BA)-C(3B)-H(3BB)	107.8
O(5B)-C(4B)-C(3B)	105.89(12)
O(5B)-C(4B)-H(4BA)	110.6
C(3B)-C(4B)-H(4BA)	110.6
O(5B)-C(4B)-H(4BB)	110.6
C(3B)-C(4B)-H(4BB)	110.6
H(4BA)-C(4B)-H(4BB)	108.7

C(6B)-O(5B)-C(4B)	117.25(11)
O(15B)-C(6B)-O(5B)	124.16(13)
O(15B)-C(6B)-C(7B)	125.45(13)
O(5B)-C(6B)-C(7B)	110.38(12)
C(16B)-C(7B)-C(6B)	108.82(12)
C(16B)-C(7B)-C(8B)	115.43(12)
C(6B)-C(7B)-C(8B)	108.01(12)
C(16B)-C(7B)-H(7B)	108.1
C(6B)-C(7B)-H(7B)	108.1
C(8B)-C(7B)-H(7B)	108.1
C(9B)-C(8B)-C(7B)	111.16(12)
C(9B)-C(8B)-H(8BA)	109.4
C(7B)-C(8B)-H(8BA)	109.4
C(9B)-C(8B)-H(8BB)	109.4
C(7B)-C(8B)-H(8BB)	109.4
H(8BA)-C(8B)-H(8BB)	108.0
C(10B)-C(9B)-C(8B)	124.89(15)
C(10B)-C(9B)-H(9B)	117.6
C(8B)-C(9B)-H(9B)	117.6
C(9B)-C(10B)-C(11B)	125.12(14)
C(9B)-C(10B)-H(10B)	117.4
C(11B)-C(10B)-H(10B)	117.4
C(10B)-C(11B)-C(12B)	113.18(12)
C(10B)-C(11B)-H(11C)	108.9
C(12B)-C(11B)-H(11C)	108.9
C(10B)-C(11B)-H(11D)	108.9
C(12B)-C(11B)-H(11D)	108.9
H(11C)-C(11B)-H(11D)	107.8
C(13B)-C(12B)-C(11B)	110.24(12)
C(13B)-C(12B)-H(12C)	109.6
C(11B)-C(12B)-H(12C)	109.6
C(13B)-C(12B)-H(12D)	109.6
C(11B)-C(12B)-H(12D)	109.6
H(12C)-C(12B)-H(12D)	108.1
O(14B)-C(13B)-O(1B)	123.09(13)
O(14B)-C(13B)-C(12B)	124.51(13)

O(1B)-C(13B)-C(12B)	112.38(12)
C(17B)-C(16B)-C(21B)	118.49(14)
C(17B)-C(16B)-C(7B)	123.13(13)
C(21B)-C(16B)-C(7B)	118.38(13)
C(18B)-C(17B)-C(16B)	120.47(14)
C(18B)-C(17B)-H(17B)	119.8
C(16B)-C(17B)-H(17B)	119.8
C(19B)-C(18B)-C(17B)	120.33(15)
C(19B)-C(18B)-H(18B)	119.8
C(17B)-C(18B)-H(18B)	119.8
C(20B)-C(19B)-C(18B)	119.70(15)
C(20B)-C(19B)-H(19B)	120.1
C(18B)-C(19B)-H(19B)	120.1
C(19B)-C(20B)-C(21B)	120.27(15)
C(19B)-C(20B)-H(20B)	119.9
C(21B)-C(20B)-H(20B)	119.9
C(20B)-C(21B)-C(16B)	120.72(14)
C(20B)-C(21B)-H(21B)	119.6
C(16B)-C(21B)-H(21B)	119.6

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1A)	25(1)	27(1)	27(1)	5(1)	2(1)	1(1)
C(2A)	27(1)	27(1)	35(1)	5(1)	10(1)	2(1)
C(3A)	40(1)	28(1)	24(1)	1(1)	6(1)	4(1)
C(4A)	37(1)	29(1)	19(1)	-1(1)	-3(1)	5(1)
O(5A)	27(1)	28(1)	20(1)	-1(1)	1(1)	3(1)
C(6A)	26(1)	16(1)	23(1)	3(1)	0(1)	2(1)
C(7A)	24(1)	21(1)	21(1)	2(1)	-1(1)	2(1)
C(8A)	31(1)	22(1)	21(1)	1(1)	0(1)	1(1)
C(9A)	33(1)	24(1)	21(1)	5(1)	-1(1)	4(1)
C(10A)	30(1)	24(1)	25(1)	2(1)	1(1)	4(1)
C(11A)	29(1)	22(1)	29(1)	4(1)	2(1)	1(1)
C(12A)	24(1)	22(1)	30(1)	1(1)	1(1)	0(1)
C(13A)	27(1)	20(1)	28(1)	2(1)	1(1)	5(1)
O(14A)	23(1)	42(1)	50(1)	19(1)	-2(1)	4(1)
O(15A)	26(1)	32(1)	26(1)	1(1)	-1(1)	4(1)
C(16A)	24(1)	21(1)	17(1)	1(1)	-4(1)	2(1)
C(17A)	25(1)	23(1)	22(1)	3(1)	1(1)	1(1)
C(18A)	28(1)	24(1)	25(1)	1(1)	-1(1)	6(1)
C(19A)	29(1)	20(1)	27(1)	4(1)	-6(1)	0(1)
C(20A)	23(1)	27(1)	29(1)	5(1)	0(1)	-1(1)
C(21A)	24(1)	26(1)	24(1)	2(1)	0(1)	3(1)
O(1B)	26(1)	29(1)	27(1)	4(1)	2(1)	8(1)
C(2B)	26(1)	31(1)	30(1)	4(1)	-3(1)	9(1)
C(3B)	33(1)	31(1)	24(1)	2(1)	-4(1)	7(1)
C(4B)	32(1)	32(1)	19(1)	1(1)	1(1)	6(1)
O(5B)	30(1)	36(1)	19(1)	-1(1)	-1(1)	7(1)
C(6B)	29(1)	21(1)	24(1)	4(1)	-1(1)	1(1)
C(7B)	32(1)	27(1)	23(1)	2(1)	0(1)	2(1)
C(8B)	37(1)	30(1)	23(1)	2(1)	-1(1)	5(1)
C(9B)	36(1)	28(1)	25(1)	6(1)	3(1)	3(1)
C(10B)	30(1)	27(1)	24(1)	3(1)	1(1)	2(1)

Table 4. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for compound 4. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}]$

C(11B)	27(1)	25(1)	27(1)	4(1)	-1(1)	5(1)
C(12B)	24(1)	24(1)	28(1)	0(1)	-1(1)	4(1)
C(13B)	24(1)	25(1)	24(1)	-1(1)	-1(1)	3(1)
O(14B)	23(1)	40(1)	42(1)	11(1)	5(1)	6(1)
O(15B)	32(1)	43(1)	29(1)	2(1)	-2(1)	0(1)
C(16B)	33(1)	25(1)	20(1)	3(1)	1(1)	0(1)
C(17B)	31(1)	28(1)	27(1)	4(1)	-2(1)	3(1)
C(18B)	36(1)	28(1)	30(1)	2(1)	-4(1)	-4(1)
C(19B)	46(1)	23(1)	31(1)	3(1)	3(1)	2(1)
C(20B)	39(1)	33(1)	35(1)	8(1)	0(1)	10(1)
C(21B)	32(1)	33(1)	28(1)	4(1)	-4(1)	1(1)

	Х	у	Z	U(eq)
H(2AA)	5992	5666	2396	35
H(2AB)	6190	6644	2922	35
H(3AA)	3462	6603	1867	37
H(3AB)	5765	7532	2084	37
H(4AA)	2377	8428	2250	34
H(4AB)	947	7351	2541	34
H(7A)	5202	8562	4012	27
H(8AA)	2891	8610	4903	30
H(8AB)	435	8383	4510	30
H(9A)	3767	6760	4599	31
H(10A)	-1054	6416	4194	32
H(11A)	-763	4496	4360	32
H(11B)	2163	4802	4413	32
H(12A)	794	3706	3514	31
H(12B)	-524	4748	3342	31
H(17A)	906	10375	4547	28
H(18A)	1542	12372	4585	31
H(19A)	4964	13325	4153	31
H(20A)	7789	12277	3708	32
H(21A)	7208	10291	3687	29
H(2BA)	13940	2494	2726	35
H(2BB)	13289	1747	2122	35
H(3BA)	12657	485	2829	35
H(3BB)	11099	1306	3199	35
H(4BA)	8560	-318	2698	33
H(4BB)	7806	874	2536	33
H(7B)	10643	56	948	33
H(8BA)	7909	348	150	36
H(8BB)	5804	400	614	36
H(9B)	10123	2078	595	35

Table 5. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Å $^2x\ 10\ ^3$) for compound 4.

H(10B)	5779	2205	1159	33
H(11C)	7009	4196	1093	32
H(11D)	9744	3970	963	32
H(12C)	9365	4839	1927	30
H(12D)	7582	3710	2068	30
H(17B)	5239	-1580	271	34
H(18B)	4880	-3512	-50	38
H(19B)	7855	-4594	210	40
H(20B)	11189	-3739	793	42
H(21B)	11609	-1804	1102	38

Table 6. Torsion angles [°] for compound 4.

C(13A)-O(1A)-C(2A)-C(3A)	-162.90(12)
O(1A)-C(2A)-C(3A)-C(4A)	51.04(17)
C(2A)-C(3A)-C(4A)-O(5A)	48.17(17)
C(3A)-C(4A)-O(5A)-C(6A)	-147.38(12)
C(4A)-O(5A)-C(6A)-O(15A)	-7.25(19)
C(4A)-O(5A)-C(6A)-C(7A)	174.49(11)
O(15A)-C(6A)-C(7A)-C(16A)	-83.58(16)
O(5A)-C(6A)-C(7A)-C(16A)	94.67(13)
O(15A)-C(6A)-C(7A)-C(8A)	41.71(18)
O(5A)-C(6A)-C(7A)-C(8A)	-140.04(12)
C(16A)-C(7A)-C(8A)-C(9A)	-169.00(12)
C(6A)-C(7A)-C(8A)-C(9A)	70.38(15)
C(7A)-C(8A)-C(9A)-C(10A)	-103.31(17)
C(8A)-C(9A)-C(10A)-C(11A)	175.26(13)
C(9A)-C(10A)-C(11A)-C(12A)	-104.66(17)
C(10A)-C(11A)-C(12A)-C(13A)	66.58(16)
C(2A)-O(1A)-C(13A)-O(14A)	-1.9(2)
C(2A)-O(1A)-C(13A)-C(12A)	177.78(12)
C(11A)-C(12A)-C(13A)-O(14A)	53.22(19)
C(11A)-C(12A)-C(13A)-O(1A)	-126.50(13)
C(6A)-C(7A)-C(16A)-C(21A)	-87.24(15)
C(8A)-C(7A)-C(16A)-C(21A)	151.18(13)
C(6A)-C(7A)-C(16A)-C(17A)	89.13(15)
C(8A)-C(7A)-C(16A)-C(17A)	-32.46(18)
C(21A)-C(16A)-C(17A)-C(18A)	0.5(2)
C(7A)-C(16A)-C(17A)-C(18A)	-175.87(12)
C(16A)-C(17A)-C(18A)-C(19A)	0.6(2)
C(17A)-C(18A)-C(19A)-C(20A)	-1.0(2)
C(18A)-C(19A)-C(20A)-C(21A)	0.3(2)
C(19A)-C(20A)-C(21A)-C(16A)	0.9(2)
C(17A)-C(16A)-C(21A)-C(20A)	-1.2(2)
C(7A)-C(16A)-C(21A)-C(20A)	175.28(12)
C(13B)-O(1B)-C(2B)-C(3B)	-164.10(12)
O(1B)-C(2B)-C(3B)-C(4B)	49.65(16)

C(2B)-C(3B)-C(4B)-O(5B)	52.24(16)
C(3B)-C(4B)-O(5B)-C(6B)	-158.93(12)
C(4B)-O(5B)-C(6B)-O(15B)	-6.8(2)
C(4B)-O(5B)-C(6B)-C(7B)	173.30(12)
O(15B)-C(6B)-C(7B)-C(16B)	-75.32(18)
O(5B)-C(6B)-C(7B)-C(16B)	104.54(14)
O(15B)-C(6B)-C(7B)-C(8B)	50.67(19)
O(5B)-C(6B)-C(7B)-C(8B)	-129.46(13)
C(16B)-C(7B)-C(8B)-C(9B)	-166.53(13)
C(6B)-C(7B)-C(8B)-C(9B)	71.46(16)
C(7B)-C(8B)-C(9B)-C(10B)	-103.89(18)
C(8B)-C(9B)-C(10B)-C(11B)	-179.92(14)
C(9B)-C(10B)-C(11B)-C(12B)	-108.87(17)
C(10B)-C(11B)-C(12B)-C(13B)	67.05(16)
C(2B)-O(1B)-C(13B)-O(14B)	-5.9(2)
C(2B)-O(1B)-C(13B)-C(12B)	172.54(12)
C(11B)-C(12B)-C(13B)-O(14B)	58.94(19)
C(11B)-C(12B)-C(13B)-O(1B)	-119.47(13)
C(6B)-C(7B)-C(16B)-C(17B)	96.17(16)
C(8B)-C(7B)-C(16B)-C(17B)	-25.4(2)
C(6B)-C(7B)-C(16B)-C(21B)	-83.85(16)
C(8B)-C(7B)-C(16B)-C(21B)	154.58(14)
C(21B)-C(16B)-C(17B)-C(18B)	-0.9(2)
C(7B)-C(16B)-C(17B)-C(18B)	179.09(14)
C(16B)-C(17B)-C(18B)-C(19B)	0.8(2)
C(17B)-C(18B)-C(19B)-C(20B)	0.1(2)
C(18B)-C(19B)-C(20B)-C(21B)	-0.7(2)
C(19B)-C(20B)-C(21B)-C(16B)	0.5(2)
C(17B)-C(16B)-C(21B)-C(20B)	0.3(2)
C(7B)-C(16B)-C(21B)-C(20B)	-179.72(14)

Symmetry transformations used to generate equivalent atoms:

Figure 1. The full numbering scheme of compound 6. All atoms shown are depicted with 50% thermal contours.

Table 1. Crystal data and structure refinement for compound 6.			
Identification code compound 6			
Empirical formula	$C_{23}H_{24}O_4$		
Formula weight	364.42		
Temperature	150(2) K		
Wavelength	0.71075 Å		
Crystal system	Triclinic		
Space group	$P\overline{1}$		
Unit cell dimensions	a = 5.5848(4) Å	$\alpha = 69.615(5)^{\circ}$.	
	b = 11.7915(8) Å	$\beta = 84.229(6)^{\circ}.$	
	c = 15.6064(11) Å	γ = 81.837(6)°.	
Volume	952.16(12) Å ³		
Ζ	2		
Density (calculated)	1.271 Mg/m ³		
Absorption coefficient	0.086 mm ⁻¹		
F(000)	388		
Crystal color	Colorless		
Crystal size	0.220 x 0.210 x 0.190 mm ³		
Theta range for data collection	3.494 to 27.468°		
Index ranges	$\text{7} \le h \le \text{-7}, \text{-15} \le k \le 15, \text{-20} \le l \le 20$		
Reflections collected	16756		
Independent reflections	4345 [R(int) = 0.0758]		
Completeness to theta = 25.242°	99.8 %		
Absorption correction	Semi-empirical from equivale	nts	
Max. and min. transmission	0.984 and 0.795		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4345 / 0 / 245		
Goodness-of-fit on F ²	1.092		
Final R indices [I>2sigma(I) = 2226 data]	R1 = 0.0510, $wR2 = 0.1119$		
R indices (all data, ? Å)	R1 = 0.1232, $wR2 = 0.1695$		
Extinction coefficient 0.033(5)			
Largest diff. peak and hole 0.294 and -0.298 e.Å ⁻³			

	Х	у	Z	U(eq)
O(1)	5977(3)	870(2)	3798(1)	40(1)
C(2)	3635(5)	1442(3)	4031(2)	42(1)
C(3)	4086(5)	2264(3)	4535(2)	44(1)
C(4)	5900(6)	3139(3)	4028(2)	46(1)
O(5)	5166(3)	3714(2)	3097(1)	43(1)
C(6)	6933(5)	4052(2)	2442(2)	31(1)
C(7)	5895(5)	4532(2)	1497(2)	31(1)
C(8)	7677(5)	4057(2)	847(2)	35(1)
C(9)	7640(5)	2716(2)	1074(2)	36(1)
C(10)	9293(5)	1865(2)	1535(2)	34(1)
C(11)	9174(5)	527(2)	1821(2)	35(1)
C(12)	8588(4)	-46(2)	2868(2)	31(1)
C(13)	6054(5)	450(2)	3098(2)	34(1)
O(14)	4275(3)	475(2)	2707(1)	48(1)
O(15)	9019(3)	3988(2)	2591(1)	43(1)
C(16)	5379(5)	5906(2)	1224(2)	30(1)
C(17)	3146(5)	6401(2)	1504(2)	36(1)
C(18)	2631(5)	7650(2)	1295(2)	38(1)
C(19)	4312(5)	8417(3)	797(2)	39(1)
C(20)	6527(5)	7937(2)	513(2)	38(1)
C(21)	7047(5)	6688(2)	725(2)	35(1)
C(22)	8855(4)	-1421(2)	3173(2)	30(1)
C(23)	10826(5)	-2094(2)	3672(2)	35(1)
C(24)	11176(5)	-3355(3)	3921(2)	41(1)
C(25)	9574(5)	-3962(3)	3684(2)	41(1)
C(26)	7601(5)	-3306(3)	3194(2)	40(1)
C(27)	7252(5)	-2052(2)	2941(2)	34(1)

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for compound 6. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

1.342(3) 1.457(3) 1.504(4) 0.9900 0.9900 1.511(4)
1.457(3) 1.504(4) 0.9900 0.9900 1.511(4)
1.504(4) 0.9900 0.9900 1.511(4)
0.9900 0.9900 1.511(4)
0.9900 1.511(4)
1.511(4)
0.9900
0.9900
1.447(3)
0.9900
0.9900
1.343(3)
1.198(3)
1.526(3)
1.516(3)
1.539(3)
1.0000
1.497(4)
0.9900
0.9900
1.321(4)
0.9500
1.492(4)
0.9500
1.555(3)
0.9900
0.9900
1.511(4)
1.511(3)
1.0000
1.209(3)
1.387(3)
1.396(4)
1.386(4)

Table 3. Bond lengths [Å] and angles [°] for compound 6.

C(17)-H(17)	0.9500
C(18)-C(19)	1.381(4)
C(18)-H(18)	0.9500
C(19)-C(20)	1.383(4)
С(19)-Н(19)	0.9500
C(20)-C(21)	1.386(4)
C(20)-H(20)	0.9500
С(21)-Н(21)	0.9500
C(22)-C(27)	1.389(3)
C(22)-C(23)	1.394(4)
C(23)-C(24)	1.390(4)
С(23)-Н(23)	0.9500
C(24)-C(25)	1.372(4)
C(24)-H(24)	0.9500
C(25)-C(26)	1.383(4)
С(25)-Н(25)	0.9500
C(26)-C(27)	1.381(4)
C(26)-H(26)	0.9500
С(27)-Н(27)	0.9500
C(13)-O(1)-C(2)	116.3(2)
O(1)-C(2)-C(3)	107.8(2)
O(1)-C(2)-H(2A)	110.2
C(3)-C(2)-H(2A)	110.2
O(1)-C(2)-H(2B)	110.2
C(3)-C(2)-H(2B)	110.2
H(2A)-C(2)-H(2B)	108.5
C(2)-C(3)-C(4)	112.9(2)
C(2)-C(3)-H(3A)	109.0
C(4)-C(3)-H(3A)	109.0
C(2)-C(3)-H(3B)	109.0
C(4)-C(3)-H(3B)	109.0
H(3A)-C(3)-H(3B)	107.8
O(5)-C(4)-C(3)	107.2(2)
O(5)-C(4)-H(4A)	110.3
C(3)-C(4)-H(4A)	110.3

O(5)-C(4)-H(4B)	110.3
C(3)-C(4)-H(4B)	110.3
H(4A)-C(4)-H(4B)	108.5
C(6)-O(5)-C(4)	116.9(2)
O(15)-C(6)-O(5)	124.0(2)
O(15)-C(6)-C(7)	125.6(2)
O(5)-C(6)-C(7)	110.4(2)
C(16)-C(7)-C(6)	107.9(2)
C(16)-C(7)-C(8)	115.72(19)
C(6)-C(7)-C(8)	108.1(2)
C(16)-C(7)-H(7)	108.3
C(6)-C(7)-H(7)	108.3
C(8)-C(7)-H(7)	108.3
C(9)-C(8)-C(7)	110.6(2)
C(9)-C(8)-H(8A)	109.5
C(7)-C(8)-H(8A)	109.5
C(9)-C(8)-H(8B)	109.5
C(7)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8B)	108.1
C(10)-C(9)-C(8)	124.8(3)
C(10)-C(9)-H(9)	117.6
C(8)-C(9)-H(9)	117.6
C(9)-C(10)-C(11)	125.0(3)
C(9)-C(10)-H(10)	117.5
С(11)-С(10)-Н(10)	117.5
C(10)-C(11)-C(12)	112.0(2)
C(10)-C(11)-H(11A)	109.2
C(12)-C(11)-H(11A)	109.2
C(10)-C(11)-H(11B)	109.2
C(12)-C(11)-H(11B)	109.2
H(11A)-C(11)-H(11B)	107.9
C(13)-C(12)-C(22)	111.0(2)
C(13)-C(12)-C(11)	109.1(2)
C(22)-C(12)-C(11)	111.4(2)
C(13)-C(12)-H(12)	108.4
С(22)-С(12)-Н(12)	108.4

С(11)-С(12)-Н(12)	108.4
O(14)-C(13)-O(1)	122.8(2)
O(14)-C(13)-C(12)	125.0(2)
O(1)-C(13)-C(12)	112.2(2)
C(21)-C(16)-C(17)	118.7(2)
C(21)-C(16)-C(7)	122.8(2)
C(17)-C(16)-C(7)	118.5(2)
C(18)-C(17)-C(16)	120.4(2)
С(18)-С(17)-Н(17)	119.8
С(16)-С(17)-Н(17)	119.8
C(19)-C(18)-C(17)	120.2(3)
C(19)-C(18)-H(18)	119.9
C(17)-C(18)-H(18)	119.9
C(18)-C(19)-C(20)	119.9(3)
C(18)-C(19)-H(19)	120.0
С(20)-С(19)-Н(19)	120.0
C(19)-C(20)-C(21)	119.8(2)
С(19)-С(20)-Н(20)	120.1
С(21)-С(20)-Н(20)	120.1
C(20)-C(21)-C(16)	121.0(2)
C(20)-C(21)-H(21)	119.5
С(16)-С(21)-Н(21)	119.5
C(27)-C(22)-C(23)	117.8(2)
C(27)-C(22)-C(12)	122.4(2)
C(23)-C(22)-C(12)	119.7(2)
C(24)-C(23)-C(22)	120.8(3)
С(24)-С(23)-Н(23)	119.6
С(22)-С(23)-Н(23)	119.6
C(25)-C(24)-C(23)	120.5(3)
C(25)-C(24)-H(24)	119.8
C(23)-C(24)-H(24)	119.8
C(24)-C(25)-C(26)	119.3(3)
С(24)-С(25)-Н(25)	120.3
С(26)-С(25)-Н(25)	120.3
C(27)-C(26)-C(25)	120.4(3)
С(27)-С(26)-Н(26)	119.8

С(25)-С(26)-Н(26)	119.8
C(26)-C(27)-C(22)	121.1(2)
С(26)-С(27)-Н(27)	119.4
С(22)-С(27)-Н(27)	119.4
С(22)-С(27)-Н(27)	119.4

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	33(1)	50(1)	39(1)	-22(1)	3(1)	1(1)
C(2)	33(2)	49(2)	44(2)	-20(1)	9(1)	2(1)
C(3)	51(2)	44(2)	32(1)	-13(1)	9(1)	-2(1)
C(4)	58(2)	50(2)	26(1)	-8(1)	0(1)	-8(2)
O(5)	37(1)	56(1)	30(1)	-7(1)	4(1)	-7(1)
C(6)	31(2)	31(1)	32(1)	-10(1)	2(1)	-5(1)
C(7)	29(1)	32(1)	31(1)	-11(1)	0(1)	-3(1)
C(8)	40(2)	33(2)	29(1)	-9(1)	1(1)	1(1)
C(9)	38(2)	39(2)	33(1)	-17(1)	2(1)	-4(1)
C(10)	32(2)	34(2)	37(1)	-14(1)	4(1)	-3(1)
C(11)	34(2)	33(2)	37(1)	-13(1)	3(1)	-2(1)
C(12)	26(1)	32(1)	33(1)	-12(1)	0(1)	-3(1)
C(13)	29(2)	34(2)	41(2)	-16(1)	0(1)	-6(1)
O(14)	29(1)	56(1)	68(1)	-34(1)	-8(1)	0(1)
O(15)	34(1)	51(1)	42(1)	-12(1)	-5(1)	-9(1)
C(16)	29(1)	33(1)	28(1)	-10(1)	0(1)	-4(1)
C(17)	31(2)	40(2)	38(1)	-14(1)	4(1)	-7(1)
C(18)	33(2)	39(2)	40(2)	-15(1)	2(1)	3(1)
C(19)	42(2)	32(2)	41(2)	-11(1)	-1(1)	0(1)
C(20)	37(2)	34(2)	40(2)	-10(1)	4(1)	-6(1)
C(21)	29(1)	35(2)	35(1)	-9(1)	2(1)	2(1)
C(22)	25(1)	35(1)	28(1)	-11(1)	4(1)	-4(1)
C(23)	31(1)	37(2)	36(1)	-12(1)	-2(1)	-5(1)
C(24)	36(2)	41(2)	40(2)	-7(1)	-4(1)	1(1)
C(25)	46(2)	33(2)	42(2)	-12(1)	5(1)	-2(1)
C(26)	39(2)	39(2)	47(2)	-22(1)	4(1)	-10(1)
C(27)	31(1)	38(2)	33(1)	-14(1)	-2(1)	-3(1)

Table 4. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for compound 6. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}]$

	Х	у	Z	U(eq)
H(2A)	2618	813	4422	51
H(2B)	2781	1920	3468	51
H(3A)	4687	1758	5143	53
H(3B)	2535	2735	4636	53
H(4A)	5917	3760	4321	55
H(4B)	7546	2696	4036	55
H(7)	4327	4192	1544	37
H(8A)	7226	4490	207	42
H(8B)	9334	4223	900	42
H(9)	6332	2459	872	43
H(10)	10662	2125	1698	41
H(11A)	10746	128	1656	42
H(11B)	7911	376	1485	42
H(12)	9752	201	3199	37
H(17)	1974	5880	1839	43
H(18)	1116	7979	1494	46
H(19)	3948	9273	650	47
H(20)	7690	8462	173	46
H(21)	8569	6363	526	42
H(23)	11943	-1685	3844	42
H(24)	12535	-3800	4258	49
H(25)	9817	-4824	3855	50
H(26)	6479	-3721	3031	48
H(27)	5891	-1614	2603	41

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for compound 6.

Table 6. Torsion angles [°] for compound 6.

C(13)-O(1)-C(2)-C(3)	-157.9(2)
O(1)-C(2)-C(3)-C(4)	52.1(3)
C(2)-C(3)-C(4)-O(5)	49.4(3)
C(3)-C(4)-O(5)-C(6)	-149.5(2)
C(4)-O(5)-C(6)-O(15)	-5.9(4)
C(4)-O(5)-C(6)-C(7)	174.8(2)
O(15)-C(6)-C(7)-C(16)	-84.9(3)
O(5)-C(6)-C(7)-C(16)	94.4(2)
O(15)-C(6)-C(7)-C(8)	40.9(3)
O(5)-C(6)-C(7)-C(8)	-139.8(2)
C(16)-C(7)-C(8)-C(9)	-168.1(2)
C(6)-C(7)-C(8)-C(9)	70.9(3)
C(7)-C(8)-C(9)-C(10)	-101.7(3)
C(8)-C(9)-C(10)-C(11)	175.4(2)
C(9)-C(10)-C(11)-C(12)	-107.0(3)
C(10)-C(11)-C(12)-C(13)	66.0(3)
C(10)-C(11)-C(12)-C(22)	-171.1(2)
C(2)-O(1)-C(13)-O(14)	-3.9(4)
C(2)-O(1)-C(13)-C(12)	176.1(2)
C(22)-C(12)-C(13)-O(14)	-72.9(3)
C(11)-C(12)-C(13)-O(14)	50.2(3)
C(22)-C(12)-C(13)-O(1)	107.1(2)
C(11)-C(12)-C(13)-O(1)	-129.8(2)
C(6)-C(7)-C(16)-C(21)	91.9(3)
C(8)-C(7)-C(16)-C(21)	-29.2(3)
C(6)-C(7)-C(16)-C(17)	-86.6(3)
C(8)-C(7)-C(16)-C(17)	152.3(2)
C(21)-C(16)-C(17)-C(18)	-0.8(4)
C(7)-C(16)-C(17)-C(18)	177.9(2)
C(16)-C(17)-C(18)-C(19)	0.8(4)
C(17)-C(18)-C(19)-C(20)	-0.6(4)
C(18)-C(19)-C(20)-C(21)	0.3(4)
C(19)-C(20)-C(21)-C(16)	-0.3(4)
C(17)-C(16)-C(21)-C(20)	0.5(4)

C(7)-C(16)-C(21)-C(20)	-178.1(2)
C(13)-C(12)-C(22)-C(27)	51.4(3)
C(11)-C(12)-C(22)-C(27)	-70.4(3)
C(13)-C(12)-C(22)-C(23)	-131.4(2)
C(11)-C(12)-C(22)-C(23)	106.9(3)
C(27)-C(22)-C(23)-C(24)	0.6(4)
C(12)-C(22)-C(23)-C(24)	-176.8(2)
C(22)-C(23)-C(24)-C(25)	-0.4(4)
C(23)-C(24)-C(25)-C(26)	0.0(4)
C(24)-C(25)-C(26)-C(27)	0.4(4)
C(25)-C(26)-C(27)-C(22)	-0.2(4)
C(23)-C(22)-C(27)-C(26)	-0.2(4)
C(12)-C(22)-C(27)-C(26)	177.1(2)

Figure 1. The full numbering scheme of compound 7. All atoms shown are depicted with 50% thermal contours.

Table 1. Crystal data and structure refinement	for compound 7.	
Identification code	compound 7	
Empirical formula	$C_{23}H_{24}O_4$	
Formula weight	364.42	
Temperature	93(2) K	
Wavelength	1.54187 Å	
Crystal system	Triclinic	
Space group	$P\overline{1}$	
Unit cell dimensions	a = 5.59160(10) Å	$\alpha = 70.326(5)^{\circ}$
	b = 11.9281(2) Å	$\beta = 80.097(6)^{\circ}$
	c = 15.3677(11) Å	$\gamma = 79.031(6)^{\circ}$.
Volume	941.04(8) Å ³	
Z	2	
Density (calculated)	1.286 Mg/m ³	
Absorption coefficient	0.701 mm ⁻¹	
F(000)	388	
Crystal color	Colorless	
Crystal size	0.270 x 0.140 x 0.050 mm ³	
Θ range for data collection	3.075 to 66.499°	
Index ranges	$-6 \le h \le 6, -14 \le k \le 14$	$l, -18 \leq l \leq 18$
Reflections collected	28626	
Independent reflections	3254 [R(int) = 0.0430]	
Completeness to $\theta = 66.499$ °	97.8 %	
Absorption correction	Semi-empirical from equiv	alents
Max. and min. transmission	0.966 and 0.850	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	3254 / 0 / 244	
Goodness-of-fit on F ²	1.073	
Final R indices [I> $2\sigma(I) = 3006 \text{ data}$]	R1 = 0.0294, wR2 = 0.073	5
R indices (all data)	R1 = 0.0317, wR2 = 0.074	9
Largest diff. peak and hole	0.208 and -0.153 e.Å ⁻³	

	Х	У	Z	U(eq)
O(1)	-1076(1)	-5894(1)	-8875(1)	23(1)
O(2)	-5050(1)	-8845(1)	-7662(1)	25(1)
O(4)	723(1)	-5118(1)	-8055(1)	30(1)
O(5)	-1043(1)	-8659(1)	-7995(1)	23(1)
C(2)	1261(2)	-6616(1)	-9041(1)	24(1)
C(3)	784(2)	-7503(1)	-9478(1)	26(1)
C(4)	-1368(2)	-8156(1)	-8973(1)	25(1)
C(6)	-3074(2)	-8933(1)	-7411(1)	20(1)
C(8)	-884(2)	-8701(1)	-6170(1)	24(1)
C(9)	-1701(2)	-7376(1)	-6360(1)	25(1)
C(10)	-3728(2)	-6725(1)	-6697(1)	24(1)
C(11)	-4215(2)	-5377(1)	-6940(1)	25(1)
C(12)	-3702(2)	-4756(1)	-8001(1)	21(1)
C(13)	-1103(2)	-5246(1)	-8309(1)	21(1)
C(14)	-2582(2)	-9403(1)	-6400(1)	21(1)
C(15)	-1595(2)	-10743(1)	-6172(1)	21(1)
C(16)	784(2)	-11137(1)	-6508(1)	23(1)
C(17)	1624(2)	-12356(1)	-6320(1)	26(1)
C(18)	105(2)	-13199(1)	-5793(1)	27(1)
C(19)	-2256(2)	-12815(1)	-5456(1)	27(1)
C(20)	-3102(2)	-11594(1)	-5646(1)	23(1)
C(21)	-4102(2)	-3397(1)	-8244(1)	20(1)
C(22)	-6057(2)	-2729(1)	-8731(1)	22(1)
C(23)	-6505(2)	-1487(1)	-8941(1)	25(1)
C(24)	-5004(2)	-895(1)	-8672(1)	25(1)
C(25)	-3054(2)	-1553(1)	-8186(1)	25(1)
C(26)	-2605(2)	-2794(1)	-7971(1)	22(1)

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for compound 7. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

O(1)-C(13)	1.3413(13)
O(1)-C(2)	1.4555(12)
O(2)-C(6)	1.2074(13)
O(4)-C(13)	1.2060(13)
O(5)-C(6)	1.3399(13)
O(5)-C(4)	1.4489(13)
C(2)-C(3)	1.5127(16)
C(2)-H(2A)	0.9900
C(2)-H(2B)	0.9900
C(3)-C(4)	1.5119(16)
C(3)-H(3A)	0.9900
C(3)-H(3B)	0.9900
C(4)-H(4A)	0.9900
C(4)-H(4B)	0.9900
C(6)-C(14)	1.5183(15)
C(8)-C(9)	1.5002(15)
C(8)-C(14)	1.5316(15)
C(8)-H(8A)	0.9900
C(8)-H(8B)	0.9900
C(9)-C(10)	1.3235(17)
C(9)-H(9)	0.9500
C(10)-C(11)	1.5046(15)
C(10)-H(10)	0.9500
C(11)-C(12)	1.5482(16)
C(11)-H(11A)	0.9900
C(11)-H(11B)	0.9900
C(12)-C(21)	1.5171(15)
C(12)-C(13)	1.5178(14)
C(12)-H(12)	1.0000
C(14)-C(15)	1.5281(15)
C(14)-H(14)	1.0000
C(15)-C(20)	1.3902(16)
C(15)-C(16)	1.3958(15)
C(16)-C(17)	1.3863(16)

Table 3. Bond lengths [Å] and angles [°] for compound 7.

C(16)-H(16)	0.9500
C(17)-C(18)	1.3885(17)
С(17)-Н(17)	0.9500
C(18)-C(19)	1.3841(17)
C(18)-H(18)	0.9500
C(19)-C(20)	1.3883(16)
C(19)-H(19)	0.9500
C(20)-H(20)	0.9500
C(21)-C(22)	1.3921(15)
C(21)-C(26)	1.3949(15)
C(22)-C(23)	1.3877(16)
С(22)-Н(22)	0.9500
C(23)-C(24)	1.3847(16)
C(23)-H(23)	0.9500
C(24)-C(25)	1.3862(17)
C(24)-H(24)	0.9500
C(25)-C(26)	1.3867(16)
С(25)-Н(25)	0.9500
C(26)-H(26)	0.9500
C(13)-O(1)-C(2)	115.30(8)
C(6)-O(5)-C(4)	115.79(8)
O(1)-C(2)-C(3)	107.43(9)
O(1)-C(2)-H(2A)	110.2
C(3)-C(2)-H(2A)	110.2
O(1)-C(2)-H(2B)	110.2
C(3)-C(2)-H(2B)	110.2
H(2A)-C(2)-H(2B)	108.5
C(4)-C(3)-C(2)	113.47(9)
C(4)-C(3)-H(3A)	108.9
C(2)-C(3)-H(3A)	108.9
C(4)-C(3)-H(3B)	108.9
C(2)-C(3)-H(3B)	108.9
H(3A)-C(3)-H(3B)	107.7
O(5)-C(4)-C(3)	108.24(9)
O(5)-C(4)-H(4A)	110.1

C(3)-C(4)-H(4A)	110.1
O(5)-C(4)-H(4B)	110.1
C(3)-C(4)-H(4B)	110.1
H(4A)-C(4)-H(4B)	108.4
O(2)-C(6)-O(5)	123.76(10)
O(2)-C(6)-C(14)	124.03(10)
O(5)-C(6)-C(14)	112.19(9)
C(9)-C(8)-C(14)	116.62(9)
C(9)-C(8)-H(8A)	108.1
C(14)-C(8)-H(8A)	108.1
C(9)-C(8)-H(8B)	108.1
C(14)-C(8)-H(8B)	108.1
H(8A)-C(8)-H(8B)	107.3
C(10)-C(9)-C(8)	128.41(11)
C(10)-C(9)-H(9)	115.8
C(8)-C(9)-H(9)	115.8
C(9)-C(10)-C(11)	122.96(11)
C(9)-C(10)-H(10)	118.5
С(11)-С(10)-Н(10)	118.5
C(10)-C(11)-C(12)	111.47(9)
C(10)-C(11)-H(11A)	109.3
C(12)-C(11)-H(11A)	109.3
C(10)-C(11)-H(11B)	109.3
C(12)-C(11)-H(11B)	109.3
H(11A)-C(11)-H(11B)	108.0
C(21)-C(12)-C(13)	112.53(9)
C(21)-C(12)-C(11)	111.54(9)
C(13)-C(12)-C(11)	107.36(9)
C(21)-C(12)-H(12)	108.4
C(13)-C(12)-H(12)	108.4
C(11)-C(12)-H(12)	108.4
O(4)-C(13)-O(1)	123.40(10)
O(4)-C(13)-C(12)	125.07(10)
O(1)-C(13)-C(12)	111.47(9)
C(6)-C(14)-C(15)	107.89(8)
C(6)-C(14)-C(8)	113.39(9)

C(15)-C(14)-C(8)	112.41(9)
C(6)-C(14)-H(14)	107.6
C(15)-C(14)-H(14)	107.6
C(8)-C(14)-H(14)	107.6
C(20)-C(15)-C(16)	118.76(10)
C(20)-C(15)-C(14)	120.00(10)
C(16)-C(15)-C(14)	121.20(10)
C(17)-C(16)-C(15)	120.46(11)
C(17)-C(16)-H(16)	119.8
C(15)-C(16)-H(16)	119.8
C(16)-C(17)-C(18)	120.31(11)
С(16)-С(17)-Н(17)	119.8
С(18)-С(17)-Н(17)	119.8
C(19)-C(18)-C(17)	119.56(11)
C(19)-C(18)-H(18)	120.2
C(17)-C(18)-H(18)	120.2
C(18)-C(19)-C(20)	120.20(11)
C(18)-C(19)-H(19)	119.9
C(20)-C(19)-H(19)	119.9
C(19)-C(20)-C(15)	120.71(10)
C(19)-C(20)-H(20)	119.6
C(15)-C(20)-H(20)	119.6
C(22)-C(21)-C(26)	118.76(10)
C(22)-C(21)-C(12)	119.33(9)
C(26)-C(21)-C(12)	121.89(10)
C(23)-C(22)-C(21)	120.58(10)
С(23)-С(22)-Н(22)	119.7
С(21)-С(22)-Н(22)	119.7
C(24)-C(23)-C(22)	120.34(10)
С(24)-С(23)-Н(23)	119.8
С(22)-С(23)-Н(23)	119.8
C(23)-C(24)-C(25)	119.46(10)
C(23)-C(24)-H(24)	120.3
C(25)-C(24)-H(24)	120.3
C(24)-C(25)-C(26)	120.42(10)
C(24)-C(25)-H(25)	119.8

C(26)-C(25)-H(25)	119.8
C(25)-C(26)-C(21)	120.45(10)
С(25)-С(26)-Н(26)	119.8
С(21)-С(26)-Н(26)	119.8

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
O(1)	19(1)	24(1)	24(1)	-9(1)	-2(1)	2(1)
O(2)	22(1)	26(1)	28(1)	-7(1)	-6(1)	-2(1)
O(4)	19(1)	28(1)	46(1)	-16(1)	-6(1)	-3(1)
O(5)	21(1)	28(1)	18(1)	-3(1)	-3(1)	-3(1)
C(2)	18(1)	24(1)	26(1)	-6(1)	1(1)	2(1)
C(3)	27(1)	25(1)	20(1)	-6(1)	1(1)	2(1)
C(4)	30(1)	28(1)	17(1)	-6(1)	-4(1)	-2(1)
C(6)	21(1)	16(1)	23(1)	-7(1)	-2(1)	-1(1)
C(8)	28(1)	23(1)	21(1)	-5(1)	-6(1)	-2(1)
C(9)	32(1)	24(1)	20(1)	-6(1)	-3(1)	-6(1)
C(10)	26(1)	22(1)	23(1)	-6(1)	1(1)	-6(1)
C(11)	26(1)	22(1)	24(1)	-8(1)	1(1)	-3(1)
C(12)	18(1)	20(1)	24(1)	-7(1)	-2(1)	-3(1)
C(13)	20(1)	17(1)	23(1)	-3(1)	-2(1)	-3(1)
C(14)	22(1)	21(1)	19(1)	-5(1)	0(1)	-1(1)
C(15)	23(1)	22(1)	16(1)	-5(1)	-4(1)	-2(1)
C(16)	23(1)	25(1)	22(1)	-6(1)	-1(1)	-5(1)
C(17)	24(1)	29(1)	26(1)	-10(1)	-3(1)	1(1)
C(18)	33(1)	21(1)	26(1)	-6(1)	-5(1)	0(1)
C(19)	31(1)	24(1)	24(1)	-4(1)	0(1)	-8(1)
C(20)	23(1)	26(1)	21(1)	-7(1)	-1(1)	-4(1)
C(21)	18(1)	21(1)	19(1)	-7(1)	2(1)	-3(1)
C(22)	20(1)	25(1)	23(1)	-9(1)	-2(1)	-4(1)
C(23)	23(1)	25(1)	24(1)	-6(1)	-4(1)	1(1)
C(24)	28(1)	19(1)	26(1)	-7(1)	0(1)	-2(1)
C(25)	24(1)	25(1)	27(1)	-12(1)	0(1)	-6(1)
C(26)	20(1)	24(1)	22(1)	-8(1)	-2(1)	-1(1)

Table 4. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for compound 7. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 \ a^{*2}U^{11} + ... + 2h \ k \ a^* \ b^* \ U^{12}]$

	х	у	Z	U(eq)
H(2A)	1959	-7049	-8447	29
H(2B)	2441	-6095	-9463	29
H(3A)	475	-7068	-10130	31
H(3B)	2272	-8102	-9487	31
H(4A)	-2919	-7591	-9056	30
H(4B)	-1447	-8806	-9228	30
H(8A)	-664	-9063	-5502	29
H(8B)	743	-8812	-6529	29
H(9)	-624	-6949	-6221	30
H(10)	-4929	-7127	-6790	29
H(11A)	-3162	-5113	-6612	30
H(11B)	-5947	-5129	-6727	30
H(12)	-4857	-4987	-8320	25
H(14)	-4191	-9324	-6008	26
H(16)	1836	-10567	-6869	28
H(17)	3245	-12616	-6553	32
H(18)	684	-14034	-5664	33
H(19)	-3301	-13388	-5094	32
H(20)	-4728	-11338	-5415	28
H(22)	-7095	-3127	-8920	27
H(23)	-7848	-1041	-9272	30
H(24)	-5308	-44	-8818	30
H(25)	-2018	-1151	-8000	30
H(26)	-1269	-3238	-7635	26

Table 5. Hydrogen coordinates ($x\ 10^4$) and isotropic displacement parameters (Ųx\ 10\ ^3) for compound 7.

Table 6. Torsion angles [°] for compound 7.

C(13)-O(1)-C(2)-C(3)	165.89(9)
O(1)-C(2)-C(3)-C(4)	-48.00(12)
C(6)-O(5)-C(4)-C(3)	159.85(9)
C(2)-C(3)-C(4)-O(5)	-51.31(12)
C(4)-O(5)-C(6)-O(2)	4.28(15)
C(4)-O(5)-C(6)-C(14)	-177.59(8)
C(14)-C(8)-C(9)-C(10)	0.61(18)
C(8)-C(9)-C(10)-C(11)	-174.03(11)
C(9)-C(10)-C(11)-C(12)	101.01(13)
C(10)-C(11)-C(12)-C(21)	-177.89(9)
C(10)-C(11)-C(12)-C(13)	-54.18(12)
C(2)-O(1)-C(13)-O(4)	10.34(15)
C(2)-O(1)-C(13)-C(12)	-166.94(9)
C(21)-C(12)-C(13)-O(4)	59.67(14)
C(11)-C(12)-C(13)-O(4)	-63.43(14)
C(21)-C(12)-C(13)-O(1)	-123.10(10)
C(11)-C(12)-C(13)-O(1)	113.80(10)
O(2)-C(6)-C(14)-C(15)	95.18(12)
O(5)-C(6)-C(14)-C(15)	-82.93(11)
O(2)-C(6)-C(14)-C(8)	-139.63(11)
O(5)-C(6)-C(14)-C(8)	42.25(12)
C(9)-C(8)-C(14)-C(6)	57.85(13)
C(9)-C(8)-C(14)-C(15)	-179.43(9)
C(6)-C(14)-C(15)-C(20)	-104.45(11)
C(8)-C(14)-C(15)-C(20)	129.79(11)
C(6)-C(14)-C(15)-C(16)	73.31(12)
C(8)-C(14)-C(15)-C(16)	-52.45(13)
C(20)-C(15)-C(16)-C(17)	-0.08(16)
C(14)-C(15)-C(16)-C(17)	-177.87(10)
C(15)-C(16)-C(17)-C(18)	-0.09(17)
C(16)-C(17)-C(18)-C(19)	0.05(17)
C(17)-C(18)-C(19)-C(20)	0.15(17)
C(18)-C(19)-C(20)-C(15)	-0.32(17)
C(16)-C(15)-C(20)-C(19)	0.29(16)

C(14)-C(15)-C(20)-C(19)	178.10(10)
C(13)-C(12)-C(21)-C(22)	127.68(11)
C(11)-C(12)-C(21)-C(22)	-111.59(11)
C(13)-C(12)-C(21)-C(26)	-54.15(14)
C(11)-C(12)-C(21)-C(26)	66.58(13)
C(26)-C(21)-C(22)-C(23)	0.11(16)
C(12)-C(21)-C(22)-C(23)	178.34(10)
C(21)-C(22)-C(23)-C(24)	0.21(17)
C(22)-C(23)-C(24)-C(25)	-0.26(17)
C(23)-C(24)-C(25)-C(26)	-0.01(17)
C(24)-C(25)-C(26)-C(21)	0.33(17)
C(22)-C(21)-C(26)-C(25)	-0.38(16)
C(12)-C(21)-C(26)-C(25)	-178.56(10)