Electronic Supplementary Information

A Concise Synthesis of (\pm) -Antroquinonol with Unusual Scaffold of 4-Hydroxy-2-cyclohexenone

Che-Sheng Hsu, Ho-Hsuan Chou, and Jim-Min Fang*

Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.

JMF: Fax: (8862)-23637812; E-mail: jmfang@ntu.edu.tw

Contents	Page
Synthetic procedure and compound characterization	S2–4
Figure S1–S2. Spectral comparison of natural and synthetic antroquinonol	S5–6
Figures S3–S95. 1D and 2D-NMR spectra of compounds 1a–16d	S7–S99
Figures S96–S105. Spectral comparison of 1a–d/15a–d and 13a–d/16a–d	S100–S109
Table S1. NMR spectral comparison of 1a–d, 13a–d, 15a–d and 16a–d	S110
Table S2. Crystal data of compound cis-14	S111–113
Table S3. Crystal data of compound 15b	S114–116
Table S4. Crystal data of compound 15c	S117–119
Table S5. Crystal data of compound 15d	S120–122
Table S6. Crystal data of compound 16b	S123–125
Table S7. Crystal data of compound 16c	S126–128

Synthetic Procedure and Compound Characterization

Reduction of compound 8 and the subsequent hydrolysis

In Table 3, the yield and isomeric ratio of products varied depending on the reducing agent and reaction conditions (base, solvent and temperature).

Entry 1: Reduction of *trans*-**8** with LiAlH₄ in THF at -78 °C for 5 h, followed by hydrolysis with oxalic acid, gave **1b** (139 mg, 17%) and **13b** (589 mg, 73%).

Entry 2: Reduction of **8** (*trans/cis* = 1:1) with LiAlH₄ in THF at -78 °C for 5 h, followed by hydrolysis with oxalic acid, gave **1b** (69 mg, 9%), **1c** (54 mg, 7%), **1d** (145 mg, 18%), **13b** (299 mg, 37%), **13c** (135 mg, 17%) and **13d** (16 mg, 2%).

Entry 3: Reduction of 8 (*trans/cis* = 1:1) with *i*-Bu₂AlH in THF at -78 °C for 5 h, followed by hydrolysis with oxalic acid, gave **1b** (101 mg, 12%), **1c** (46 mg, 6%), **1d** (153 mg, 19%), **13b** (274 mg, 34%), **13c** (163 mg, 20%) and **13d** (15 mg, 2%).

Entry 4: Reduction of **8** (*trans/cis* = 1:1) with Li(O*t*-Bu)₃AlH in THF at 0 °C for 5 h, followed by hydrolysis with oxalic acid, gave **1b** (38 mg, 5%), **1c** (55 mg, 7%), **1d** (105 mg, 13%), **13a** (145 mg, 18%), **13b** (178 mg, 22%), **13c** (155 mg, 19%) and **13d** (40 mg, 5%).

Entry 5: Reduction of **8** (2.07 mmol, *trans/cis* = 1:1) with NaBH₄ (4.14 mmol) and CeCl₃•7H₂O (4.14 mmol) in MeOH at 0 °C for 5 h, followed by hydrolysis with oxalic acid, gave **1b** (59 mg, 9%), **1c** (38 mg, 5%), **1d** (186 mg, 23%), **13b** (299 mg, 37%), **13c** (69 mg, 9%) and **13d** (70 mg, 9%).

Entry 6: Reduction of 8 (*trans/cis* = 1:1) with LiEt₃BH in THF at -78 °C for 5 h, followed by hydrolysis with oxalic acid, gave 1b (92 mg, 11%), 1c (85 mg, 10%), 81 mg, 10%), 13b (283 mg, 35%) and 13c (178 mg, 22%).

Entry 8: Reduction of 8 (*trans/cis* = 1:1) with Li(siamyl)₃BH in THF at -40 °C for 5 h, followed by hydrolysis with oxalic acid, gave **1b** (80 mg, 10%), **1c** (147 mg, 18%), **13b** (307 mg, 38%) and **13c** (225 mg, 28%).

5-Benzyl-4-hydroxy-6-methyl-2,3-dimethoxycyclohex-2-en-1-one (15) and 5-benzyl-4-hydroxy-6-methyl-1,2-dimethoxycyclohex-1-en-3-one (16)

According to the representative procedure for alkylation reaction, ketone **12** (0.5 g, 2.17 mmol) was treated with LHMDS (4.34 mmol, 4.3 mL of 1.0 M solution in THF) and benzyl bromide (0.7 g, 4.34 mmol) to give the alkylation product **14** (*trans/cis* = 1:1) as shown in the ¹H NMR spectrum. HRMS calcd for C₁₈H₂₅O₅: 321.1702, found: m/z 321.1692 [M + H]⁺.

According to the representative procedure for reduction, the above-prepared ketone **14** was treated with an appropriate reducing agent (LiAlH₄, *i*-Bu₂AlH, LiAl(O*t*-Bu)₃H, NaBH₄/CeCl₃•7H₂O, Superhydride[®], L-Selectride[®] or LS-Selectride[®]), followed by hydrolysis with oxalic acid, to give isomeric compounds **15b–d** and **16a–c** in varied ratios depending on the reducing agent and reaction conditions. The diastereomers were separated

by silica gel column chromatography with elution of EtOAc/hexane (10:90). Some diastereomers were recrystallized from EtOAc/hexane for X-ray diffraction analysis.

The (4,5-cis-5,6-cis)-isomer **15c** (30 mg, 0.11 mmol) was subjected to epimerization by treatment with K₂CO₃ (45 mg, 0.33 mmol) in MeOH (2 mL) at 25 °C for 12 h, giving the (4,5-cis-5,6-trans)-isomer **15a** (27 mg, 90%) after purification on a silica gel column by elution with EtOAc/CH₂Cl₂ (10:90).

(4,5-*Cis*-5,6-*trans*)-isomer **15a**: C₁₆H₂₀O₄; IR v_{max} (neat) 3431, 3026, 2932, 1660, 1619, 1454, 1240, 1015, 942, 751, 703 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ 7.31–7.26 (2 H, m), 7.23–7.18 (3 H, m), 3.98 (4 H, br s), 3.64 (3 H, s), 2.90 (1 H, dd, *J* = 13.1, 5.2 Hz), 2.75 (1 H, dd, *J* = 13.1, 11.0 Hz), 2.59 (1 H, qd, *J* = 6.7, 11.0 Hz), 2.03–1.93 (2 H, m), 1.25 (3 H, d, *J* = 6.7 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 196.8, 160.4, 139.2, 135.8, 129.2 (2 ×), 128.6 (2 ×), 126.4, 66.9, 60.7, 59.4, 45.0, 40.3, 34.4, 12.6. HRMS calcd for C₁₆H₂₁O₄: 277.1440, found: *m*/*z* 277.1439 [M + H]⁺.

(4,5-*Trans*-5,6-*trans*)-isomer **15b**: C₁₆H₂₀O₄; White solid, mp 75.5–77.3 °C; IR v_{max} (neat) 3427, 3026, 2935, 2880, 1660, 1614, 1454, 1234, 1011, 969, 750, 702 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.33–7.15 (5 H, m), 4.20 (1 H, d, *J* = 7.5 Hz), 4.08 (3 H, s), 3.62 (3 H, s), 3.03 (1 H, dd, *J* = 14.1, 5.0 Hz), 2.84 (1 H, dd, *J*=14.1, 4.5 Hz), 2.65 (1 H, br s), 2.22–2.13 (1 H, m), 2.13–2.00 (1 H, m), 1.35 (3 H, d, *J* = 7.0 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 196.8, 160.1, 138.0, 134.9, 129.9 (2 ×), 128.4 (2 ×), 126.4, 68.7, 60.7, 60.3, 46.5, 42.2, 34.9, 14.9. HRMS calcd for C₁₆H₂₁O₄: 277.1440, found: *m*/*z* 277.1439 [M + H]⁺. A sample of **15b** was recrystallized from EtOAc/hexane. The 4,5-*trans*-5,6-*trans* configuration was unambiguously determined by X-ray crystallography.

(4,5-*Cis*-5,6-*cis*)-isomer **15c**: $C_{16}H_{20}O_4$; White solid, mp 137.8–138.9; IR v_{max} (neat) 3420, 3025, 2980, 2835, 1665, 1614, 1454, 1204, 1023, 969, 754, 712 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ 7.32–7.15 (5 H, m), 4.23 (1 H, d, *J* = 3.7 Hz), 4.05 (3 H, s), 3.64 (3 H, s), 2.99 (1 H, dd, *J* = 13.4, 8.5 Hz), 2.67 (1 H, dd, *J* = 13.4, 6.1 Hz), 2.49 (1 H, qd, *J*=7.3, 4.3 Hz), 2.41–2.32 (1 H, m), 1.30 (3 H, d, *J* = 7.3 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 199.1, 160.5, 139.6, 135.2, 129.0 (2 ×), 128.6 (2 ×), 126.3, 69.2, 60.6, 59.8, 44.3, 41.5, 33.6, 15.0. HRMS calcd for C₁₆H₂₁O₄: 277.1440, found: *m*/*z* 277.1439 [M + H]⁺. A sample of **15c** was recrystallized from EtOAc/hexane. The 4,5-cis-5,6-cis configuration was unambiguously determined by X-ray crystallography.

(4,5-*Trans*-5,6-*cis*)-isomer **15d**: C₁₆H₂₀O₄; White solid, mp 168.7–169.5 °C; IR v_{max} (neat) 3430, 3016, 2970, 2884, 1663, 1620, 1451, 1224, 1013, 959, 757, 700 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ 7.31–7.23 (2 H, m), 7.23–7.15 (1 H, m), 7.11 (2 H, d, *J* = 7.3 Hz), 4.23 (1 H, d, *J* = 5.5 Hz), 4.03 (3 H, s), 3.67 (3 H, s), 2.81 (1 H, qd, *J* = 7.3, 4.3 Hz), 2.77–2.69 (1 H, m), 2.69–2.60 (1 H, m), 2.34–2.25 (1 H, m), 1.17 (3 H, d, *J* = 7.3 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 197.4, 158.9, 139.1, 135.6, 128.8 (2 ×), 128.6 (2 ×), 126.4, 68.9, 60.6, 59.6, 46.0, 40.0, 33.2, 11.8. HRMS calcd for C₁₆H₂₁O₄: 277.1440, found: *m*/*z* 277.1439 [M + H]⁺. A

sample of **15d** was recrystallized from EtOAc/hexane. The 4,5-*trans*-5,6-*cis* configuration was unambiguously determined by X-ray crystallography.

(4,5-*Cis*-5,6-*trans*)-isomer **16a**: $C_{16}H_{20}O_4$; IR v_{max} (neat) 3465, 3025, 2928, 2852, 1667, 1606, 1454, 1260, 1008, 972, 748, 701 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ 7.30–7.22 (2 H, m), 7.21–7.16 (1 H, m), 7.08 (2 H, d, *J* = 7.3 Hz), 4.50 (1 H, d, *J* = 5.5 Hz), 3.98 (3 H, s), 3.69 (3 H, s), 3.05 (1 H, dd, *J* = 14.0, 3.1 Hz), 2.49 (1 H, qd, *J* = 7.3, 1.2 Hz), 2.44–2.35 (1 H, m), 2.18–2.05 (1 H, m), 1.21 (3 H, d, *J* = 7.3 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 194.5, 166.7, 139.8, 133.6, 129.1 (2 ×), 128.6 (2 ×), 126.2, 70.7, 60.7, 59.1, 46.5, 33.8, 31.8, 17.7. HRMS calcd for C₁₆H₂₁O₄: 277.1440, found: *m/z* 277.1439 [M + H]⁺.

(4,5-*Trans*-5,6-*trans*)-isomer **16b**: $C_{16}H_{20}O_4$; Pale yellow solid, mp 59.5–61.2 °C; IR v_{max} (neat) 3460, 3027, 2937, 2881, 1746, 1602, 1454, 1259, 1040, 977, 753, 702 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.26 (4 H, m), 7.26–7.17 (1 H, m), 3.98 (3 H, s), 3.83 (1 H, br s), 3.74 (1 H, d, J = 12.5 Hz), 3.60 (3 H, s), 3.16 (1 H, dd, J = 14.1, 4.5 Hz), 2.92 (1 H, dd, J = 14.1, 3.5 Hz), 2.37 (1 H, qd, J = 10.2, 6.5 Hz), 1.89–1.76 (1 H, m), 1.31 (3 H, d, J = 6.5 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 195.8, 166.9, 137.2, 133.3, 130.5 (2 ×), 128.3 (2 ×), 126.4, 71.3, 60.6, 60.5, 46.3, 34.7, 32.7, 15.7. HRMS calcd for $C_{16}H_{21}O_4$: 277.1440, found: m/z 277.1439 [M + H]⁺. A sample of **16b** was recrystallized from EtOAc/hexane. The 4,5-*trans*-5,6-*trans* configuration was unambiguously determined by X-ray crystallography.

(4,5-*Cis*-5,6-*cis*)-isomer **16c**: C₁₆H₂₀O₄; White solid, mp 99.8–101.3 °C; IR v_{max} (neat) 3440, 2924, 2852, 1755, 1651, 1454, 1226, 1025, 959, 735, 701 cm⁻¹. ¹H NMR (400 MHz, CDCl₃) δ 7.23–7.10 (5 H, m), 4.12 (1 H, d, *J* = 4.5 Hz), 4.08 (3 H, s), 3.64 (3 H, s), 2.91–2.82 (1 H, m), 2.82–2.71 (1 H, m), 2.59–2.47 (2 H, m), 1.17 (3 H, d, *J* = 7.0 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 195.3, 167.2, 141.3, 134.4, 129.0 (2 ×), 128.3 (2 ×), 125.8, 74.9, 60.7, 60.3, 45.9, 37.3, 30.4, 15.3. HRMS calcd for C₁₆H₂₁O₄: 277.1440, found: *m*/*z* 277.1439 [M + H]⁺. A sample of **16c** was recrystallized from EtOAc/hexane. The 4,5-*cis*-5,6-*cis* configuration was unambiguously determined by X-ray crystallography.

(4,5-*Trans*-5,6-*cis*)-isomer **16d**: $C_{16}H_{20}O_4$; IR v_{max} (neat) 3471, 2924, 2853, 1666, 1607, 1454, 1233, 1048, 955, 748, 701 cm⁻¹. ¹H NMR (500 MHz, CDCl₃) δ 7.30–7.26 (2 H, m), 7.22–7.17 (3 H, m), 4.02 (1 H, d, J = 12.2 Hz), 3.97 (3 H, s), 3.69 (1 H, s), 3.65 (3 H, s), 3.35 (1 H, dd, J = 14.0, 3.7 Hz), 2.57 (1 H, dd, J = 14.0, 11.9 Hz), 2.34–2.22 (1 H, m), 1.19 (3 H, d, J = 6.7 Hz). ¹³C NMR (125 MHz, CDCl₃) δ 195.4, 170.2, 138.8, 133.6, 128.9 (2 ×), 128.6 (2 ×), 126.3, 71.3, 60.8, 59.5, 44.7, 33.7, 33.6, 12.1. HRMS calcd for $C_{16}H_{21}O_4$: 277.1440, found: m/z 277.1439 [M + H]⁺.

Figure S1. Comparison of the ¹H NMR spectra of natural (+)-antroquinonol and the synthetic racemic mixture (±)-1a (500 MHz, CDCl₃).

Figure S2. Comparison of the ¹³C NMR spectra of natural (+)-antroquinonol and the synthetic racemic mixture (±)-**1a** (125 MHz, CDCl₃).

Figure S3. ¹H NMR spectrum of compound 10 (400 MHz, CDCl₃)

Figure S4. ¹³C NMR spectrum of compound 10 (100 MHz, CDCl₃)

Figure S5. ¹³C-DEPT NMR spectrum of compound **10** (100 MHz, CDCl₃)

Figure S6. ¹H NMR spectrum of compound 9 (400 MHz, CDCl₃)

Figure S7. ¹³C NMR spectrum of compound 9 (100 MHz, CDCl₃)

Figure S8. ¹³C-DEPT NMR spectrum of compound 9 (100 MHz, CDCl₃)

Figure S9. ¹H NMR spectrum of compound 11 (400 MHz, CDCl₃)

Figure S10. ¹³C NMR spectrum of compound 11 (100 MHz, CDCl₃)

Figure S11. ¹H NMR spectrum of compound 12 (400 MHz, CDCl₃)

Figure S12. ¹³C NMR spectrum of compound 12 (100 MHz, CDCl₃)

Figure S13. ¹³C-DEPT NMR spectrum of compound 12 (100 MHz, CDCl₃)

Figure S14. ¹H NMR spectrum of *trans*-8 and *cis*-8 (400 MHz, CDCl₃)

Figure S15. ¹³C NMR spectrum of *trans*-8 and *cis*-8 (100 MHz, CDCl₃)

Figure S16. ¹H NMR spectrum of compound 1a (500 MHz, CDCl₃)

Figure S17. ¹³C NMR spectrum of compound 1a (125 MHz, CDCl₃)

Figure S18. ¹H–¹H COSY NMR spectrum of compound 1a (500 MHz, CDCl₃)

Figure S19. ¹H-¹H NOESY spectrum of compound **1a** (500 MHz, CDCl₃).

Figure S20. ¹H–¹³C HSQC NMR spectrum of compound 1a (125 MHz, CDCl₃)

Figure S21. ¹H NMR spectrum of compound 1b (500 MHz, CDCl₃)

Figure S22. ¹³C NMR spectrum of compound 1b (125 MHz, CDCl₃)

Figure S23. ¹H–¹H COSY NMR spectrum of compound 1b (500 MHz, CDCl₃)

Figure S24. ¹H-¹H NOESY spectrum of compound **1b** (500 MHz, CDCl₃).

Figure S25. ¹H–¹³C HSQC NMR spectrum of compound 1b (125 MHz, CDCl₃)

Figure S26. ¹H NMR spectrum of compound 1c (500 MHz, CDCl₃)

Figure S27. ¹³C NMR spectrum of compound 1c (125 MHz, CDCl₃)

Figure S28. ¹H–¹H COSY NMR spectrum of compound **1c** (500 MHz, CDCl₃)

Figure S29. ¹H-¹H NOESY spectrum of compound **1c** (500 MHz, CDCl₃).

Figure S30. ¹H–¹³C HSQC NMR spectrum of compound 1c (125 MHz, CDCl₃)

Figure S31. ¹H NMR spectrum of compound 1d (400 MHz, CDCl₃)

Figure S32. ¹³C NMR spectrum of compound 1d (100 MHz, CDCl₃)

Figure S33. ¹H–¹H COSY NMR spectrum of compound 1d (400 MHz, CDCl₃)

Figure S34. $^{1}H^{-1}H$ NOESY spectrum of compound **1d** (400 MHz, CDCl₃).

Figure S35. ¹H–¹³C HSQC NMR spectrum of compound 1d (100 MHz, CDCl₃)

Figure S36. ¹H NMR spectrum of compound 13a (500 MHz, CDCl₃)

Figure S37. ¹³C NMR spectrum of compound 13a (125 MHz, CDCl₃)

Figure S38. ¹H–¹H COSY NMR spectrum of compound 13a (500 MHz, CDCl₃)

Figure S39. ¹H-¹H NOESY spectrum of compound **13a** (500 MHz, CDCl₃).

Figure S40. ¹H–¹³C HSQC NMR spectrum of compound 13a (125 MHz, CDCl₃)

Figure S41. ¹H NMR spectrum of compound 13b (400 MHz, CDCl₃)

Figure S42. ¹³C NMR spectrum of compound 13b (100 MHz, CDCl₃)

Figure S43. ¹H–¹H COSY NMR spectrum of compound 13b (400 MHz, CDCl₃)

Figure S44. ¹H-¹H NOESY spectrum of compound **13b** (400 MHz, CDCl₃).

Figure S45. ¹H–¹³C HSQC NMR spectrum of compound 13b (125 MHz, CDCl₃)

Figure S46. ¹H NMR spectrum of compound 13c (400 MHz, CDCl₃)

Figure S47. ¹³C NMR spectrum of compound 13c (100 MHz, CDCl₃)

Figure S48. ¹H–¹H COSY NMR spectrum of compound 13c (400 MHz, CDCl₃)

Figure S49. ¹H-¹H NOESY spectrum of compound 13c (400 MHz, CDCl₃).

Figure S50. ¹H–¹³C HSQC NMR spectrum of compound **13c** (100 MHz, CDCl₃)

Figure S51. ¹H NMR spectrum of compound 13d (500 MHz, CDCl₃)

Figure S52. ¹³C NMR spectrum of compound 13d (125 MHz, CDCl₃)

Figure S53. ¹H–¹H COSY NMR spectrum of compound 13d (500 MHz, CDCl₃)

Figure S54. ¹H-¹H NOESY spectrum of compound **13d** (500 MHz, CDCl₃).

Figure S55. ¹H–¹³C HSQC NMR spectrum of compound **13d** (125 MHz, CDCl₃)

Figure S56. ¹H NMR spectrum of compounds 15a (500 MHz, CDCl₃)

Figure S57. ¹³C NMR spectrum of compound 15a (125 MHz, CDCl₃)

Figure S58. ¹H–¹H COSY NMR spectrum of compound 15a (500 MHz, CDCl₃)

Figure S59. ¹H-¹H NOESY spectrum of compound **15a** (500 MHz, CDCl₃).

Figure S60. ¹H–¹³C HSQC NMR spectrum of compound 15a (125 MHz, CDCl₃)

Figure S61. ¹H NMR spectrum of compound 15b (400 MHz, CDCl₃)

Figure S62. ¹³C NMR spectrum of compound 15b (100 MHz, CDCl₃)

Figure S63. ¹H–¹H COSY NMR spectrum of compound 15b (400 MHz, CDCl₃)

Figure S64. ¹H-¹H NOESY spectrum of compound **15b** (400 MHz, CDCl₃).

Figure S65. ¹H–¹³C HSQC NMR spectrum of compound 15b (100 MHz, CDCl₃)

Figure S66. ¹H NMR spectrum of compound 15c (500 MHz, CDCl₃)

Figure S67. ¹³C NMR spectrum of compound 15c (125 MHz, CDCl₃)

Figure S68. ¹H–¹H COSY NMR spectrum of compound **15c** (500 MHz, CDCl₃)

Figure S69. ¹H-¹H NOESY spectrum of compound **15c** (500 MHz, CDCl₃).

Figure S70. ¹H–¹³C HSQC NMR spectrum of compound **15c** (125 MHz, CDCl₃)

Figure S71. ¹H NMR spectrum of compound 15d (500 MHz, CDCl₃)

Figure S72. ¹³C NMR spectrum of compound 15d (125 MHz, CDCl₃)

Figure S73. ¹H–¹H COSY NMR spectrum of compound 15d (500 MHz, CDCl₃)

Figure S74. ¹H-¹H NOESY spectrum of compound 15d (500 MHz, CDCl₃).

Figure S75. ¹H–¹³C HSQC NMR spectrum of compound 15d (125 MHz, CDCl₃)

Figure S76. ¹H NMR spectrum of compound 16a (500 MHz, CDCl₃)

Figure S77. ¹³C NMR spectrum of compound 16a (125 MHz, CDCl₃)

Figure S78. ¹H–¹H COSY NMR spectrum of compound 16a (500 MHz, CDCl₃)

Figure S79. ¹H-¹H NOESY spectrum of compound **16a** (500 MHz, CDCl₃).

Figure S80. ¹H–¹³C HSQC NMR spectrum of compound 16a (125 MHz, CDCl₃)

Figure S81. ¹H NMR spectrum of compound 16b (400 MHz, CDCl₃)

Figure S82. ¹³C NMR spectrum of compound 16b (100 MHz, CDCl₃)

Figure S83. ¹H–¹H COSY NMR spectrum of compound 16b (400 MHz, CDCl₃)

Figure S84. ¹H-¹H NOESY spectrum of compound **16b** (400 MHz, CDCl₃).

Figure S85. ¹H–¹³C HSQC NMR spectrum of compound 16b (100 MHz, CDCl₃)

Figure S86. ¹H NMR spectrum of compound 16c (400 MHz, CDCl₃)

Figure S87. ¹³C NMR spectrum of compound 16c (100 MHz, CDCl₃)

Figure S88. ¹H–¹H COSY NMR spectrum of compound 16c (400 MHz, CDCl₃)

Figure S89. ¹H-¹H NOESY spectrum of compound **16c** (400 MHz, CDCl₃).

Figure S90. ¹H–¹³C HSQC NMR spectrum of compound **16c** (100 MHz, CDCl₃)

Figure S91. ¹H NMR spectrum of compound 16d (500 MHz, CDCl₃)

Figure S92. ¹³C NMR spectrum of compound 16d (125 MHz, CDCl₃)

Figure S93. ¹H–¹H COSY NMR spectrum of compound 16d (500 MHz, CDCl₃)

Figure S94. ¹H–¹H NOESY NMR spectrum of compound 16d (500 MHz, CDCl₃)

Figure S95. ¹H–¹³C HSQC NMR spectrum of compound 16d (125 MHz, CDCl₃)

Figure S96. Comparison of the ¹H NMR spectra of 1a and 15a (400 MHz, CDCl₃).

Figure S97. ORTEP drawing of compounds **15b** (IC16470, all-*trans*) and comparison of the ¹H NMR spectra of **1b** with **15b** (400 MHz, CDCl₃).

Figure S98. ORTEP drawing (IC16707) of compound **15c** (all-*cis*) and comparison of the ¹H NMR spectra of **1c** with **15c** (400 MHz, CDCl₃).

Figure S99. ORTEP drawing (IC16473) of compound **15d** (4,5-*trans*-5,6-*cis*) and comparison of the ¹H NMR spectra of **1d** with **15d** (400 MHz, CDCl₃).

Figure S100. Comparison of the 1 H NMR spectra of 13a and 16a (400 MHz, CDCl₃).

Figure S101. ORTEP drawing (IC16451) of compound **16b** (4,5-*trans*-5,6-*cis*) and comparison of the ¹H NMR spectra of **13b** and **16b** (400 MHz, CDCl₃).

Figure S102. ORTEP drawing (IC16471) of compound **16c** (4,5-*trans*-5,6-*cis*) and comparison of the ¹H NMR spectra of **13c** with **11c** (400 MHz, CDCl₃).

Figure S103. Comparison of the 1 H NMR spectra of 13d and 16d (400 MHz, CDCl₃).

Figure S104. ¹H NMR spectra of 1a–d and 13a–d (400 MHz, CDCl₃).

Figure S105. ¹H NMR spectra of 15a–d and 16a–d (400 MHz, CDCl₃).

compound	H-4	H-6	Me-6	C-1	C-4	C-6	<u>C</u> H ₃ -6
1a	4.34 (d, 3.1)	2.52 (qd, 6.7, 11.0)	1.16 (d, 6.7)	197.1	68.0	40.3	12.3
15a	3.98 (br s)	2.59 (qd, 6.7, 11.0)	1.25 (d, 6.7)	196.8	66.9	40.3	12.6
1b	4.25 (d, 8.5)	2.24–2.17 (m)	1.19 (d, 6.7)	197.1	69.2	42.0	13.1
15b	4.20 (d, 7.5)	2.22–2.13 (m)	1.35 (d, 7.0)	196.8	68.7	42.2	14.9
1c	4.40 (br s)	2.46 (qd, 7.3, 4.3)	1.23 (d, 7.3)	199.2	69.7	44.1	14.8
15c	4.23 (d, 3.7)	2.49 (qd, 7.3, 4.3)	1.30 (d, 7.3)	199.1	69.2	44.3	15.0
1d	4.29 (d, 4.4)	2.88 (qd, 6.8, 3.8)	1.08 (d, 6.8)	197.6	69.6	40.2	11.8
15d	4.23 (d, 5.5)	2.81 (qd, 7.3, 4.3)	1.17 (d, 7.3)	197.4	68.9	40.0	11.8
13a	4.42 (d, 5.5)	2.61 (qd, 7.3, 1.6)	1.29 (d, 7.3)	194.9	70.8	34.6	16.0
16a	4.50 (d, 5.5)	2.49 (qd, 7.3, 1.2)	1.21 (d, 7.3)	194.5	70.7	33.8	17.7
13b	3.84 (d, 12.5)	2.56–2.40 (m)	1.19 (d, 7.0)	196.2	72.2	35.3	15.4
16b	3.74 (d, 12.5)	2.37 (qd, 10.2, 6.5)	1.31 (d, 6.5)	195.8	71.3	34.7	15.7
13c	4.12 (d, 2.0)	2.86 (qd, 7.0, 4.5)	1.20 (d, 7.0)	195.5	75.3	37.1	15.0
16c	4.12 (d, 4.5)	2.91–2.82 (m)	1.17 (d, 7.0)	195.3	74.9	37.3	15.3
13d	3.91 (d, 12.2)	2.62–2.57 (m)	1.11 (d, 7.3)	195.7	71.6	34.4	11.9
16d	4.02 (d, 12.0)	2.34–2.22 (m)	1.19 (d, 6.7)	195.4	71.3	33.6	12.1

Table S1. NMR spectral comparison of 1a-d/15a-d and 13a-d/16a-d.^a

^{*a*} Chemical shifts (δ) are given in parts per million (ppm) relative to $\delta_{\rm H}$ 7.24 and $\delta_{\rm C}$ 77.0 (central line of triplet) for CHCl₃ and CDCl₃, respectively. Data in parenthesis are coupling constants (*J*) given in Hz.

Table S2. Crystal data, atomic coordinates bond lengths and bond angles of compound *cis*-14(IC17004, deposit CCDC 1036453)

Table 1. Crystal data and struct	ure refinement for ic17004.
Identification code	ic17004
Empirical formula	C ₁₈ ^H 24 ^O 5
Formula weight	320.37
Temperature	200(2) K
Wavelength	1.54178 Å
Crystal system	Orthorhombic
Space group	Pbca
Unit cell dimensions	a = 11.7297(5) Å alpha = 90°
	b = 8.2689(5) Å beta = 90°
	c = 34.713(2) Å gamma = 90
Volume, Z	3366.9(3) Å ³ , 8
Density (calculated)	1.264 Mg/m ³
Absorption coefficient	0.749 mm ⁻¹
F(000)	1376
Crystal size	0.20 x 0.15 x 0.10 mm
0 range for data collection	4.55 to 68.00°
Limiting indices	$-9 \le h \le 14, -9 \le k \le 9, -41 \le 1 \le 40$
Reflections collected	7993
Independent reflections	3052 (R _{int} = 0.0535)
Completeness to $\Theta = 68.00^{\circ}$	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.93119
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	3052 / 0 / 208
Goodness-of-fit on F ²	1.022
Final R indices $[I>2\sigma(I)]$	R1 = 0.0737, wR2 = 0.1887
R indices (all data)	R1 = 0.1087, wR2 = 0.2200
Largest diff. peak and hole	0.693 and -0.286 eÅ ⁻³

		nia britan		1.1
	x	У	z	U(eq)
0(1)	7155(2)	2454 (4)	3519(1)	56(1)
D(2)	7151(2)	910(3)	4215(1)	43(1)
0(3)	9284(2)	672(3)	4601(1)	42(1)
0(4)	11066(2)	758(3)	4183(1)	45(1)
0(5)	10572(2)	3473 (3)	4212(1)	43(1)
C(1)	8051(3)	2420 (5)	3696(1)	45(1)
C(2)	8128(3)	1588(5)	4074(1)	40(1)
C(3)	9126(3)	1372(4)	4250(1)	38(1)
C(4)	10254(3)	1910(4)	4070(1)	37(1)
C(5)	10157 (3)	2125 (5)	3636(1)	42(1)
C(6)	9123(3)	3285(6)	3558(1)	50(1)
C(7)	8996(3)	3848(6)	3149(1)	54(1)
C(8)	10081(3)	4519(5)	2979(1)	48(1)
C(9)	10675(4)	5800(6)	3138(1)	60(1)
C(10)	11683(4)	6365(6)	2970(1)	64(1)
C(11)	12068(3)	5657(6)	2635(1)	56(1)
C(12)	11465(4)	4403 (5)	2472(1)	53(1)
C(13)	10492(3)	3852(5)	2645(1)	51(1)
C(14)	6223 (3)	2002(5)	4284(1)	51(1)
C(15)	8427 (3)	853(6)	4892(1)	53(1)
C(16)	12215(3)	1097(6)	4061(1)	61(1)
C(17)	10631(4)	3648(6)	4621(1)	58(1)
C(18)	10100(4)	548(6)	3426(1)	63(1)

O(1) = O(1)	1 218 (4)	O(2) - C(2)	1.367(4)
O(1) = O(1)	1 434 (5)	O(3) - C(3)	1.359(4)
D(2) - C(14)	1 435(4)	O(4) - C(4)	1.403(4)
C(3) = C(15)	1 441 (5)	O(5) - C(17)	1.428(4)
D(4) = C(4)	1 433(4)	C(1) - C(2)	1.484 (5)
C(3) = C(4)	1 524 (5)	C(2) - C(3)	1,334(5)
(1) - C(0)	1 528(5)	C(4) - C(5)	1,521(5)
C(5) - C(18)	1 497(6)	C(5) - C(6)	1.570(5)
C(5) = C(10)	1 502(5)	C(7) - C(8)	1,509(5)
C(8) - C(13)	1 369(6)	C(8) - C(9)	1,384(6)
C(9) - C(10)	1 399(6)	C(10) - C(11)	1.377(6)
C(11) -C(12)	1.377(6)	C(12)-C(13)	1.367(6)
C(2)-O(2)-C(14)	115.9(3)	C(3)-O(3)-C(15)	119.4(3)
C(4) - O(4) - C(16)	114.9(3)	C(17)-O(5)-C(4)	116.4(3)
(1)-C(1)-C(2)	120.6(3)	O(1)-C(1)-C(6)	122.9(3)
2(2)-C(1)-C(6)	116.4(3)	C(3)-C(2)-O(2)	121.1(3)
C(3)-C(2)-C(1)	121.4(3)	O(2)-C(2)-C(1)	117.2(3)
2(2)-C(3)-O(3)	126.0(3)	C(2)-C(3)-C(4)	122.2(3)
C(3) -C(3) -C(4)	111.8(3)	O(4)-C(4)-O(5)	109.9(3)
(4) - C(4) - C(5)	113.9(3)	O(5)-C(4)-C(5)	104.7(3)
D(4) - C(4) - C(3)	106.0(3)	O(5)-C(4)-C(3)	110.4(3)
C(5)-C(4)-C(3)	112.0(3)	C(18)-C(5)-C(4)	112.7(3)
C(18) -C(5) -C(6)	114.4(3)	C(4)-C(5)-C(6)	107.5(3)
C(7)-C(6)-C(1)	111.1(3)	C(7)-C(6)-C(5)	115.5(3)
C(1)-C(6)-C(5)	107.3(3)	C(6)-C(7)-C(8)	113.6(3)
C(13)-C(8)-C(9)	118.0(4)	C(13)-C(8)-C(7)	118.7(4)
C(9)-C(8)-C(7)	123.3(4)	C(8)-C(9)-C(10)	120.9(4)
C(11) -C(10) -C(9)	119.2(4)	C(10)-C(11)-C(12)	119.9(4)
C(13) -C(12) -C(11)	119.9(4)	C(12)-C(13)-C(8)	122.1(4)

Table 2. Atomic coordinates $[\times 10^4]$ and equivalent isotropic

Table 4. Anisotropic displacement parameters	$[Å^2 x]$	10 ³] for ic17004.
The anisotropic displacement factor exponent	takes	the form:
$-2\pi^{2}$ [(ha [*]) ² U ₁₁ + + 2hka [*] b [*] U ₁₂]		

	U 11	U22	U 33	U 23	U13	U12
0(1)	36(1)	85(2)	48(2)	10(1)	-7(1)	-6(1)
0(2)	39(1)	43(1)	48(1)	1(1)	5(1)	· -8(1)
0(3)	46(1)	45(2)	36(1)	10(1)	5(1)	3(1)
0(4)	43(1)	50(2)	41(1)	10(1)	3(1)	14(1)
0(5)	38(1)	40(1)	50(1)	3(1)	1(1)	-5(1)
C(1)	34(2)	58(2)	42(2)	4(2)	-4(2)	-1(2)
C(2)	37(2)	43 (2)	40(2)	2(2)	2(2)	-8(2)
C(3)	44(2)	31(2)	37 (2)	3(2)	0(2)	-1(2)
C(4)	35(2)	39(2)	36(2)	2(2)	-4(2)	1(2)
C(5)	35(2)	57(2)	34(2)	11(2)	0(2)	-5(2)
C(6)	39(2)	64 (3)	46(2)	10(2)	-2(2)	-1(2)
C(7)	46(2)	61(3)	55(2)	10(2)	0(2)	4(2)
C(8)	42(2)	47 (2)	54(2)	18(2)	0(2)	7(2)
C(9)	74(3)	62(3)	44(2)	8(2)	10(2)	2(2)
C(10)	70(3)	62 (3)	59(3)	12(2)	-7(2)	-18(2)
C(11)	45(2)	67 (3)	57(2)	21(2)	6(2)	1(2)
C(12)	57(2)	52(2)	50(2)	9(2)	6(2)	7(2)
C(13)	51(2)	49(2)	52(2)	8(2)	-2(2)	2(2)
C(14)	44(2)	57 (3)	53(2)	-5(2)	9(2)	-4(2)
C(15)	57(2)	65(3)	36(2)	6(2)	11(2)	4(2)
C(16)	40(2)	78(3)	66 (3)	15(2)	1(2)	20(2)
C(17)	70(3)	59(3)	45(2)	-9(2)	-1(2)	-14(2)
C(18)	65(3)	79(3)	45(2)	-10(2)	10(2)	-9(2)

Table S3. Crystal data, atomic coordinates bond lengths and bond angles of compound 15b(IC16470, deposit CCDC 1036448)

Table 1. Crystal data and struc	ture refinement for ic16470.
Identification code	ic16470
Empirical formula	C ₁₆ H ₂₀ O ₄
Formula weight	276.32
Temperature	295(2) K
Wavelength	1.54178 Å
Crystal system	Monoclinic
Space group	P21/c
Unit cell dimensions	a = 11.0565(7) Å alpha = 90 ⁰
	b = 25.7976(11) Å beta = 103.206(7) [°]
	c = 5.1911(3) Å gamma = 90 [°]
Volume, Z	1441.51(14) Å ³ , 4
Density (calculated)	1.273 Mg/m ³
Absorption coefficient	0.740 mm ⁻¹
F(000)	592
Crystal size	0.20 x 0.20 x 0.15 mm
⊖ range for data collection	3.43 to 67.96°
Limiting indices	$-11 \le h \le 13$, $-31 \le k \le 27$, $-6 \le l \le 3$
Reflections collected	6579
Independent reflections	2512 (R _{int} = 0.0369)
Completeness to $\otimes = 67.96^{\circ}$	95.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.89795
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2512 / 0 / 181
Goodness-of-fit on F ²	1.044
Final R indices $[I>2\sigma(I)]$	R1 = 0.0584, wR2 = 0.1641
R indices (all data)	R1 = 0.0849, wR2 = 0.1893
Largest diff. peak and hole	0.284 and -0.299 eÅ ⁻³

		Ast all		CERT A CONTRACT
	x	У	z	U(eq)
(1)	1345(2)	2771(1)	4621(4)	69(1)
(2)	3115(2)	3102(1)	2538(5)	76(1)
(3)	4225(2)	4100(1)	4286(4)	69(1)
(4)	2724 (2)	4763(1)	6131(5)	90(1)
(1)	1316(2)	3304(1)	3940 (5)	50(1)
:(2)	2583(2)	3482(1)	3643 (5)	52(1)
2(3)	3031(2)	3957(1)	4378 (5)	53(1)
:(4)	2298(3)	4337(1)	5455(5)	58(1)
(5)	987 (3)	4193(1)	5652(5)	53(1)
(6)	842(3)	3608(1)	6024 (5)	52(1)
(7)	-478(3)	3444(1)	6119(5)	60(1)
(8)	-1458(3)	3511(1)	3588(6)	55(1)
(9)	-2008(3)	3986(1)	2845(6)	67(1)
(10)	-2884(3)	4048(1)	535(7)	79(1)
(11)	-3265(3)	3634(2)	-1107(7)	80(1)
(12)	-2754(3)	3153(1)	-390(7)	80(1)
(13)	-1854(3)	3096(1)	1916(6)	64(1)
(14)	4181(3)	3173(1)	1487(8)	92(1)
2(15)	4327 (4)	4497(1)	2409(8)	95(1)
C(16)	611(3)	4518(1)	7811(6)	70(1)

0(1)-C(1)	1.419(3)	O(2)-C(2)	1.338(3)
O(2)-C(14)	1.420(4)	O(3)-C(3)	1.382(3)
D(3)-C(15)	1.436(4)	O(4)-C(4)	1.215(3)
C(1)-C(2)	1.514(4)	C(1)-C(6)	1.522(3)
C(2)-C(3)	1.346(3)	C(3)-C(4)	1.461(4)
C(4)-C(5)	1.522(4)	C(5)-C(16)	1.531(4)
C(5)-C(6)	1.535(3)	C(6)-C(7)	1.531(4)
C(7)-C(8)	1.510(4)	C(8)-C(9)	1.385(4)
C(8)-C(13)	1.385(4)	C(9)-C(10)	1.367(4)
2(10)-C(11)	1.370(5)	C(11)-C(12)	1.379(5)
C(12)-C(13)	1.378(4)		
C(2)-O(2)-C(14)	123.7(2)	C(3)-O(3)-C(15)	115.9(2)
(1) - C(1) - C(2)	110.4(2)	0(1)-C(1)-C(6)	108.2(2)
(2) - C(1) - C(6)	113.2(2)	0(2)-C(2)-C(3)	128.4(3)
D(2) - C(2) - C(1)	109.3(2)	C(3)-C(2)-C(1)	122.4(2)
C(2) - C(3) - O(3)	121.7(2)	C(2)-C(3)-C(4)	121.3(2)
(3) - C (3) - C (4)	116.9(2)	O(4) - C(4) - C(3)	120.3(3)
(4) - C(4) - C(5)	120.9(2)	C(3)-C(4)-C(5)	118.8(2)
(4) -C(5) -C(16)	109.7(2)	C(4)-C(5)-C(6)	112.1(2)
C(16) - C(5) - C(6)	113.1(2)	C(1)-C(6)-C(7)	111.5(2)
(1)-C(6)-C(5)	110.7(2)	C(7)-C(6)-C(5)	113.7(2)
2(8)-C(7)-C(6)	116.1(2)	C(9)-C(8)-C(13)	117.0(3)
(9)-C(8)-C(7)	121.7(3)	C(13)-C(8)-C(7)	121.3(2)
(10) -C(9) -C(8)	121.6(3)	C(9)-C(10)-C(11)	120.8(3)
(10) -C(11) -C(12)	118.9(3)	C(13)-C(12)-C(11)	120.0(3)
(12) -C(13) -C(8)	121.6(3)		

Table 4 The ani -2n ² [Table 4. Anisotropic displacement parameters $[\text{\AA}^2 \times 10^3]$ for icl6470. The anisotropic displacement factor exponent takes the form: $2\pi^2$ [$(\text{ha}^*)^2 \text{U}_{11} + \ldots + 2\text{hka}^* \text{b}^* \text{U}_{12}$]						
	V11	U 22	U 33	U23	V13	V12	
0(1)	88(1)	44(1)	83 (1)	9(1)	37(1)	2(1)	
0(2)	69(1)	58(1)	112(2)	-17(1)	43(1)	-1(1)	
0(3)	50(1)	65(1)	91(1)	2(1)	11(1)	-4(1)	
0(4)	86(2)	56(1)	133(2)	-26(1)	34(2)	-16(1)	
C(1)	57(2)	41(1)	54(1)	4(1)	15(1)	0(1)	
C(2)	53(2)	46(1)	58(1)	2(1)	14(1)	7(1)	
C(3)	49(1)	50(1)	58(1)	6(1)	7(1)	1(1)	
C(4)	65(2)	47(1)	60(2)	1(1)	12(1)	0(1)	
C(5)	62(2)	45(1)	52(1)	2(1)	15(1)	6(1)	
2(6)	62(2)	49(1)	48(1)	8(1)	17(1)	8(1)	
C(7)	66 (2)	54(2)	66(2)	11(1)	29(1)	5(1)	
C (8)	55(2)	48(1)	70(2)	6(1)	29(1)	2(1)	
C(9)	63 (2)	54 (2)	85(2)	3(1)	17(2)	5(1)	
C(10)	67 (2)	70(2)	100(2)	19(2)	19(2)	13(2)	
C(11)	54 (2)	107(3)	79(2)	5(2)	15(2)	10(2)	
2(12)	64 (2)	87 (2)	91(2)	-18(2)	20(2)	-3(2)	
2(13)	59(2)	53(2)	86(2)	0(1)	26(2)	2(1)	
C(14)	77 (2)	88(2)	127 (3)	-27 (2)	56(2)	-2(2)	
C(15)	83 (2)	79(2)	129(3)	17(2)	38(2)	-15(2)	
C(16)	85(2)	59(2)	68(2)	-10(1)	22(2)	6(1)	

Table S4. Crystal data, atomic coordinates bond lengths and bond angles of compound 15c(IC16707, deposit CCDC 1036452)

Table 1. Crystal data and struc	ture refinement for ic16707.
Identification code	ic16707
Empirical formula	C ₁₆ H ₂₀ O ₄
Formula weight	276.32
Temperature	295(2) K
Wavelength	1.54178 Å
Crystal system	Orthorhombic
Space group	Pca2
Unit cell dimensions	a = 7.4859(4) Å alpha = 90 [°]
	b = 21.3424(16) Å beta = 90 [°]
	c = 9.3008(5) Å gamma = 90 [°]
Volume, Z	1485.96(16) Å ³ , 4
Density (calculated)	1.235 Mg/m ³
Absorption coefficient	0.718 mm ⁻¹
F(000)	592
Crystal size	0.25 x 0.20 x 0.15 mm
Θ range for data collection	4.14 to 68.00°
Limiting indices	$-7 \le h \le 9, -25 \le k \le 18, -7 \le l \le 11$
Reflections collected	3281
Independent reflections	1934 ($R_{int} = 0.0254$)
Completeness to $\Theta = 68.00^{\circ}$	99.7 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.89313
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	1934 / 1 / 181
Goodness-of-fit on F ²	1.022
Final R indices $[I>2\sigma(I)]$	R1 = 0.0437, wR2 = 0.1080
R indices (all data)	R1 = 0.0526, wR2 = 0.1160
Absolute structure parameter	-0.3(3)
Largest diff. peak and hole	0.114 and -0.159 eÅ ⁻³

ij					
	x	У	z	U(eq)	
D(1)	7540(2)	2980(1)	3579(2)	65(1)	
0(2)	6218(3)	4201(1)	2292(3)	77(1)	
)(3)	2704(3)	4157(1)	2734(2)	70(1)	
)(4)	1134(2)	3019(1)	3091(3)	84(1)	
2(1)	6577(3)	3051(1)	2264 (3)	51(1)	
2(2)	5463(4)	3631(1)	2394 (3)	55(1)	
C(3)	3687(3)	3612(1)	2676(3)	56(1)	
2(4)	2736(3)	3025(1)	2866(3)	56(1)	
2(5)	3789(3)	2422(1)	2877 (3)	52(1)	
2(6)	5442(3)	2480(1)	1906(3)	50(1)	
2(7)	8023 (5)	4259(2)	1768(5)	87(1)	
2(8)	2335(6)	4364 (2)	4147(4)	89(1)	
2(9)	4182(4)	2245(2)	4453 (3)	65(1)	
2(10)	6563(3)	1882(1)	1822(4)	62(1)	
2(11)	5575(3)	1338(1)	1189(4)	62(1)	
2(12)	5154(5)	813(2)	1993 (5)	81(1)	
2(13)	4185(6)	322 (2)	1403(6)	96(1)	
C(14)	3626(6)	346(2)	12(6)	98(1)	
C(15)	4057 (5)	863 (2)	-815(5)	90(1)	
C(16)	5008(4)	1349(2)	-236(4)	71(1)	

O(1)-C(1)	1.428(3)	O(2)-C(2)	1.346(4)
O(2)-C(7)	1.441(4)	O(3)-C(3)	1.378(3)
O(3)-C(8)	1.413(4)	O(4) - C(4)	1.218(3)
C(1) - C(2)	1.497(4)	C(1) - C(6)	1.523(4)
C(2) - C(3)	1.356(4)	C(3)-C(4)	1.451(4)
C(4)-C(5)	1.509(4)	C(5)-C(6)	1.537(3)
C(5)-C(9)	1.542(4)	C(6)-C(10)	1.529(4)
C(10)-C(11)	1.497(4)	C(11)-C(12)	1.383(5)
C(11)-C(16)	1.392(5)	C(12)-C(13)	1.388(6)
C(13)-C(14)	1.360(8)	C(14)-C(15)	1.383(7)
C(15)-C(16)	1.368(5)	121 82.11	
C(2)-O(2)-C(7)	119.6(3)	C(3)-O(3)-C(8)	113.8(2)
O(1)-C(1)-C(2)	107.5(2)	O(1)-C(1)-C(6)	112.6(2)
C(2)-C(1)-C(6)	111.60(19)	O(2)-C(2)-C(3)	116.9(3)
O(2)-C(2)-C(1)	120.5(2)	C(3)-C(2)-C(1)	122.6(3)
C(2)-C(3)-O(3)	120.5(3)	C(2)-C(3)-C(4)	121.9(3)
O(3)-C(3)-C(4)	117.5(2)	O(4) - C(4) - C(3)	120.9(3)
O(4)-C(4)-C(5)	120.3(3)	C(3)-C(4)-C(5)	118.7(2)
C(4)-C(5)-C(6)	110.4(2)	C(4) - C(5) - C(9)	108.4(2)
C(6)-C(5)-C(9)	115.1(2)	C(1)-C(6)-C(10)	111.91(19)
C(1)-C(6)-C(5)	112.6(2)	C(10)-C(6)-C(5)	113.9(2)
C(11)-C(10)-C(6)	113.4(2)	C(12)-C(11)-C(16)	117.3(3)
C(12)-C(11)-C(10)	121.9(3)	C(16)-C(11)-C(10)	120.8(3)
C(11)-C(12)-C(13)	121.1(4)	C(14)-C(13)-C(12)	120.6(4)
C(13)-C(14)-C(15)	119.1(4)	C(16)-C(15)-C(14)	120.5(4)
C(15)-C(16)-C(11)	121.4(4)		

Table	4. Anisotro	opic displa	cement para	neters [Å x	the form:	ic16707.
$-2\pi^2$ [(ha [*]) ² U ₁₁ + + 2h			ka [*] b [*] U ₁₂]			
	U 11	U22	U33	U23	U13	U12
0(1)	34(1)	108(2)	52(1)	4(1)	-4(1)	-6(1)
0(2)	71(1)	73(1)	87 (2)	0(1)	14(1)	-5(1)
0(3)	68(1)	87(1)	56(1)	-1(1)	5(1)	25(1)
0(4)	34(1)	117(2)	101(2)	-8(2)	10(1)	7(1)
C(1)	34(1)	77 (2)	42(1)	4(1)	6(1)	-1(1)
C(2)	52(1)	74(1)	39(1)	1(1)	0(1)	-1(1)
C(3)	47(1)	79(2)	41(1)	1(1)	1(1)	11(1)
C(4)	36(1)	90(2)	42(1)	-2(1)	-3(1)	5(1)
C(5)	32(1)	78(2)	46(1)	2(1)	-2(1)	-5(1)
C(6)	36(1)	73(1)	40(1)	5(1)	1(1)	4(1)
C(7)	76(2)	86(2)	100(3)	9(2)	17(2)	-19(2)
C(8)	96(2)	103(3)	68(2)	-17(2)	8(2)	23 (2)
C(9)	49(1)	96(2)	48(1)	11(1)	3(1)	-6(1)
C(10)	40(1)	81(2)	67 (2)	6(2)	3(1)	7(1)
C(11)	47(1)	70(2)	68(2)	2(1)	13(1)	12(1)
C(12)	89(2)	72(2)	83(2)	10(2)	16(2)	15(2)
C(13)	106(3)	64(2)	116(4)	-2(2)	30(3)	4(2)
C(14)	87 (2)	81(2)	128(4)	-30(2)	10(3)	-2(2)
C(15)	88(2)	95(3)	85(2)	-17(2)	0(2)	10(2)
C(16)	64 (2)	80(2)	69(2)	-2(2)	5(2)	8(2)

Table S5. Crystal data, atomic coordinates bond lengths and bond angles of compound 15d(IC16473, deposit CCDC 1036450)

Ĩ	Table 1. Crystal data and struc	ture refinement for ic16473.
	Identification code	ic16473
	Empirical formula	C ₁₆ ^H 20 ^O 4
	Formula weight	276.32
	Temperature	295(2) K
	Wavelength	1.54178 Å
	Crystal system	Triclinic
	Space group	рĪ
	Unit cell dimensions	a = 6.9852(5) Å alpha = 73.977(7) [°]
		b = 8.4612(7) Å beta = 81.811(6) ^o
		c = 13.1167(9) Å gamma = 78.873(7) ^o
	Volume, Z	727.84(9) Å ³ , 2
	Density (calculated)	1.261 Mg/m ³
	Absorption coefficient	0.733 mm ⁻¹
	F(000)	296
	Crystal size	0.25 x 0.20 x 0.15 mm
	0 range for data collection	3.52 to 68.00°
	Limiting indices	-7 ≤ b ≤ 8, -9 ≤ k ≤ 10, -15 ≤ l ≤ 15
	Reflections collected	4603
	Independent reflections	2643 (R _{int} = 0.0228)
	Completeness to $\Theta = 68.00^{\circ}$	99.7 %
	Absorption correction	Semi-empirical from equivalents
	Max. and min. transmission	1.00000 and 0.92347
	Refinement method	Full-matrix least-squares on F^2
	Data / restraints / parameters	2643 / 0 / 181
	Goodness-of-fit on F ²	1.024
	Final R indices $[I>2\sigma(I)]$	R1 = 0.0455, wR2 = 0.1217
	R indices (all data)	R1 = 0.0614, wR2 = 0.1361
	Largest diff. peak and hole	0.210 and -0.214 eÅ ⁻³

		17. det		1.15 Mar 1.15
	x	У	z	U(eq)
D(1)	-2600(2)	1455(2)	9053(1)	52(1)
0(2)	-696(2)	4497 (2)	8266(1)	56(1)
0(3)	3069(2)	3273 (2)	8584(1)	48(1)
0(4)	4439(2)	61(2)	8530(1)	52(1)
C(1)	-1417(2)	1847(2)	8068(1)	40(1)
C(2)	-36(3)	2900(2)	8237(1)	39(1)
C(3)	1837(2)	2282(2)	8430(1)	39(1)
C(4)	2681(2)	548(2)	8470(1)	39(1)
C(5)	1275(3)	-615(2)	8480(2)	42(1)
C(6)	-347 (2)	282(2)	7745(1)	40(1)
C(7)	438(3)	641(3)	6560(2)	48(1)
C(8)	-1058(3)	1581(3)	5790(2)	46(1)
C(9)	-2848(3)	1092(4)	5836(2)	67(1)
C(10)	-4200(4)	2002(5)	5122(2)	84(1)
C(11)	-3772(4)	3386(4)	4356(2)	84(1)
C(12)	-2003 (5)	3855(4)	4290(2)	87(1)
C(13)	-662(4)	2963 (3)	5003(2)	68(1)
C(14)	-2523(3)	5338(3)	7874(2)	68(1)
C(15)	2938(3)	3327 (3)	9671(2)	54(1)
C(16)	2341(3)	-2268(3)	8292(2)	64(1)

O(1)-C(1)	1.424(2)	0(2)-C(2)	1.350(2)
0(2)-C(14)	1.426(2)	0(3)-C(3)	1.380(2)
O(3)-C(15)	1.429(2)	O(4) - C(4)	1.224(2)
C(1)-C(2)	1.508(2)	C(1)-C(6)	1.527(3)
C(2)-C(3)	1.344(2)	C(3)-C(4)	1.461(3)
C(4) - C(5)	1.515(2)	C(5)-C(16)	1.520(3)
C(5)-C(6)	1.538(2)	C(6)-C(7)	1.539(3)
C(7)-C(8)	1.511(3)	C(8)-C(13)	1.373(3)
C(8)-C(9)	1.379(3)	C(9)-C(10)	1.391(3)
C(10)-C(11)	1.368(4)	C(11)-C(12)	1.354(4)
C(12)-C(13)	1.381(4)		
C(2)-O(2)-C(14)	120.49(16)	C(3)-O(3)-C(15)	112.18(14)
D(1) - C(1) - C(2)	105.17(13)	O(1)-C(1)-C(6)	111.84(15)
C(2)-C(1)-C(6)	112.78(14)	C(3)-C(2)-O(2)	117.33(16)
C(3) - C(2) - C(1)	122.39(16)	O(2)-C(2)-C(1)	120.14(15)
C(2) - C(3) - O(3)	121.20(17)	C(2)-C(3)-C(4)	122.10(16)
C(3)-C(3)-C(4)	116.70(15)	O(4)-C(4)-C(3)	120.84(16)
O(4) - C(4) - C(5)	122.12(17)	C(3)-C(4)-C(5)	117.00(15)
C(4) - C(5) - C(16)	112.04(16)	C(4)-C(5)-C(6)	110.68(15)
C(16) - C(5) - C(6)	115.16(16)	C(1)-C(6)-C(5)	110.28(14)
C(1) - C(6) - C(7)	112.62(16)	C(5)-C(6)-C(7)	112.12(15)
C(8) - C(7) - C(6)	115.17(15)	C(13)-C(8)-C(9)	117.4(2)
C(13)-C(8)-C(7)	120.45(19)	C(9)-C(8)-C(7)	122.1(2)
C(8) - C(9) - C(10)	120.5(3)	C(11)-C(10)-C(9)	120.6(3)
C(12)-C(11)-C(10)	119.3(2)	C(11)-C(12)-C(13)	120.3(3)
C(8)-C(13)-C(12)	121.9(3)		

	11	the t	12 1				
		1000	-	(6) 363 LL (6) 958 LL	4 (227) 3-1270 1 (227) 3-1270		
	V 11	U 22	U 33	U23	U13	U12	
D(1)	33 (1)	82(1)	47 (1)	-22(1)	0(1)	-19(1)	
(2)	46(1)	49(1)	78(1)	-21(1)	-20(1)	1(1)	
0(3)	40(1)	54(1)	55(1)	-13(1)	-9(1)	-20(1)	
D(4)	30(1)	58(1)	68(1)	-12(1)	-13(1)	-4(1)	
2(1)	28(1)	53(1)	39(1)	-12(1)	-10(1)	-6(1)	
2(2)	36(1)	44(1)	38(1)	-10(1)	-5(1)	-6(1)	
C(3)	32(1)	45(1)	41(1)	-9(1)	-6(1)	-12(1)	
2(4)	30(1)	50(1)	37(1)	-6(1)	-9(1)	-6(1)	
2(5)	36(1)	46(1)	44(1)	-8(1)	-9(1)	-8(1)	
2(6)	33(1)	49(1)	43(1)	-11(1)	-9(1)	-12(1)	
C(7)	37(1)	64 (1)	45(1)	-16(1)	-6(1)	-4(1)	
2 (8)	45(1)	58(1)	39(1)	-20(1)	-4(1)	-3(1)	
C (9)	55(1)	96 (2)	53(1)	-17(1)	-12(1)	-19(1)	
C(10)	49(1)	140(3)	71(2)	-40(2)	-17(1)	-8(2)	
C(11)	77 (2)	109(2)	59(2)	-25(2)	-28(1)	21(2)	
C(12)	100(2)	80(2)	67 (2)	1(1)	-22(2)	1(2)	
2(13)	69(2)	71(2)	60(1)	-8(1)	-10(1)	-14(1)	
C(14)	50(1)	57(1)	94 (2)	-19(1)	-20(1)	9(1)	
C(15)	54(1)	57(1)	59(1)	-18(1)	-16(1)	-12(1)	
C(16)	64(1)	49(1)	83 (2)	-16(1)	-29(1)	-3(1)	

Table S6. Crystal data, atomic coordinates bond lengths and bond angles of compound 16b(IC16451, deposit CCDC 1036447)

Table 1. Crystal data and struc	ture refinement for ic16451.
Identification code	ic16451
Empirical formula	°16 ^H 20 ^O 4
Formula weight	276.32
Temperature	295(2) K
Wavelength	1.54178 Å
Crystal system	Monoclinic
Space group	P2 ₁ /n
Unit cell dimensions	a = 9.8399(6) Å alpha = 90 [°]
	b = 5.2999(3) Å beta = 98.305(6) [°]
	$c = 28.5110(16) \text{ Å} gamma = 90^{\circ}$
Volume, Z	1471.27(15) Å ³ , 4
Density (calculated)	1.247 Mg/m ³
Absorption coefficient	0.725 mm ⁻¹
F(000)	592
Crystal size	0.20 x 0.15 x 0.10 mm
Θ range for data collection	3.13 to 67.96°
Limiting indices	$-9 \le h \le 11, -4 \le k \le 6, -29 \le 1 \le 34$
Reflections collected	4894
Independent reflections	2684 (R _{int} = 0.0214)
Completeness to $0 = 67.96^{\circ}$	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.97043
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	2684 / 0 / 181
Goodness-of-fit on F ²	1.034
Final R indices $[I>2\sigma(I)]$	R1 = 0.0483, wR2 = 0.1458
R indices (all data)	R1 = 0.0672, wR2 = 0.1651
Largest diff. peak and hole	0.226 and -0.199 eÅ ⁻³

		su din.		and a second
	x	У	Z	U(eq)
0(1)	4968(2)	9650(3)	788(1)	72(1)
0(2)	6365(2)	8151(4)	102(1)	81(1)
0(3)	8579(1)	4964 (3)	229(1)	63(1)
0(4)	8967 (2)	2317(3)	1119(1)	67(1)
2(1)	5684(2)	7338(4)	854(1)	50(1)
C(2)	6595(2)	6976(4)	475(1)	54(1)
2(3)	7720(2)	5225(4)	571(1)	50(1)
C(4)	8001(2)	4099(4)	994(1)	49(1)
2(5)	7272(2)	4738(4)	1413(1)	52(1)
2(6)	6532(2)	7276(4)	1344(1)	48(1)
C(7)	5664 (2)	7985(4)	1734(1)	56(1)
2(8)	4496(2)	6229 (4)	1795(1)	52(1)
C(9)	4631(3)	4387 (5)	2141(1)	68(1)
C(10)	3541(3)	2770 (5)	2193(1)	81(1)
C(11)	2321(3)	3023 (5)	1902(1)	81(1)
C(12)	2159(3)	4864 (6)	1561(1)	78(1)
C(13)	3237 (2)	6460 (5)	1509(1)	63(1)
C(14)	7972(3)	3882(6)	-212(1)	84(1)
C(15)	9613(3)	939 (5)	777(1)	79(1)
C(16)	8277 (3)	4674 (7)	1876(1)	94(1)

O(1)-C(1)	1.413(2)	O(2)-C(2)	1.225(3)
0(3)-C(3)	1.386(2)	O(3)-C(14)	1.431(3)
O(4)-C(4)	1.351(2)	O(4)-C(15)	1.439(3)
C(1)-C(2)	1.514(3)	C(1)-C(6)	1.520(3)
C(2)-C(3)	1.440(3)	C(3)-C(4)	1.337(3)
C(4)-C(5)	1.519(3)	C(5)-C(6)	1.528(3)
C(5)-C(16)	1.530(3)	C(6)-C(7)	1.541(3)
C(7)-C(8)	1.508(3)	C(8)-C(13)	1.387(3)
C(8)-C(9)	1.381(3)	C(9)-C(10)	1.398(4)
C(10)-C(11)	1.365(4)	C(11)-C(12)	1.370(4)
C(12)-C(13)	1.381(3)		
C(3)-O(3)-C(14)	116.00(16)	C(4)-O(4)-C(15)	122.54(19)
O(1) - C(1) - C(2)	110.45(16)	0(1)-C(1)-C(6)	109.80(17)
C(2) - C(1) - C(6)	110.59(15)	0(2)-C(2)-C(3)	122.26(19)
O(2) - C(2) - C(1)	120.15(19)	C(3)-C(2)-C(1)	117.58(17)
C(4) - C(3) - O(3)	121.45(18)	C(4) - C(3) - C(2)	120.85(18)
D(3)-C(3)-C(2)	117.36(18)	C(3)-C(4)-O(4)	126.62(19)
C(3)-C(4)-C(5)	123.39(18)	O(4)-C(4)-C(5)	109.97(17)
C(4) - C(5) - C(6)	111.44(16)	C(4)-C(5)-C(16)	110.68(17)
C(6)-C(5)-C(16)	111.5(2)	C(1)-C(6)-C(7)	111.66(15)
C(1) - C(6) - C(5)	108.94(16)	C(7)-C(6)-C(5)	115.15(17)
C(8) - C(7) - C(6)	116.32(16)	C(13)-C(8)-C(9)	117.9(2)
C(13)-C(8)-C(7)	120.57(19)	C(9)-C(8)-C(7)	121.5(2)
C(8)-C(9)-C(10)	121.0(3)	C(11)-C(10)-C(9)	119.7(2)
C(10)-C(11)-C(12)	120.3(2)	C(13)-C(12)-C(11)	120.0(3)
C(12)-C(13)-C(8)	121.1(2)		

-211 [(ha) ⁻ U 11	+ + 2h	ka b U]				
	V11	U22	U 33	U 23	V13	U12	
0(1)	85(1)	70(1)	62(1)	14(1)	14(1)	26(1)	
0(2)	86(1)	102(1)	58(1)	29(1)	19(1)	21(1)	
0(3)	57(1)	75(1)	59(1)	-6(1)	20(1)	-10(1)	
0(4)	62(1)	65(1)	75(1)	8(1)	11(1)	14(1)	
C(1)	51(1)	48(1)	50(1)	2(1)	10(1)	0(1)	
C(2)	56(1)	58(1)	48(1)	5(1)	10(1)	-3 (1)	
C(3)	50(1)	51(1)	50(1)	-3(1)	12(1)	-8(1)	
C(4)	43(1)	44(1)	59(1)	0(1)	7(1)	-5(1)	
C(5)	53(1)	55(1)	49(1)	6(1)	7(1)	-1(1)	
C(6)	51(1)	43(1)	48(1)	-2(1)	8(1)	-7 (1)	
C(7)	70(1)	51(1)	49(1)	-8(1)	11(1)	-6(1)	
C(8)	66(1)	49(1)	43(1)	-8(1)	21(1)	0(1)	
C(9)	79(2)	68(2)	61(1)	6(1)	26(1)	9 (1)	
C(10)	109(2)	62 (2)	84 (2)	14(1)	54 (2)	7 (2)	
C(11)	86(2)	74 (2)	95(2)	-14(2)	50(2)	-17(1)	
C(12)	68(2)	96(2)	73 (2)	-11(2)	24(1)	-16(1)	
C(13)	68(1)	69(2)	55(1)	2(1)	19(1)	-3 (1)	
C(14)	85(2)	110(2)	59(2)	-19(2)	21(1)	-10(2)	
C(15)	74(2)	64 (2)	101(2)	-11(1)	22(1)	13(1)	
C(16)	86(2)	140(3)	53(1)	9(2)	-2(1)	34 (2)	

Table S7. Crystal data, atomic coordinates bond lengths and bond angles of compound 16c(IC16471, deposit CCDC 1036449)

Table 1. Crystal data and struc	ture refinement for ic16471.
Identification code	ic16471
Empirical formula	^C 16 ^H 20 ^O 4
Formula weight	276.32
Temperature	295(2) K
Wavelength	1.54178 Å
Crystal system	Triclinic
Space group	ΡĪ
Unit cell dimensions	a = 5.8502(3) Å alpha = 88.055(6) ^o b = 10.6878(8) Å beta = 85.254(5) ^o
Volume 7	c = 11.8197(8) A gamma = 81.792(5)
Density (colculated)	1 250 W- (³
Absorption coefficient	1.259 mg/m
F(000)	296
Crystal size	0.25 x 0.20 x 0.15 mm
0 range for data collection	3.75 to 67.98°
Limiting indices	-4 5 h 5 6, -12 5 k 5 12, -14 5 l 5 11
Reflections collected	4363
Independent reflections	$2644 (R_{i=1} = 0.0190)$
Completeness to $\Theta = 67.98^{\circ}$	99.5 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.90623
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2644 / 0 / 181
Goodness-of-fit on F ²	1.040
Final R indices $[I>2\sigma(I)]$	R1 = 0.0568, wR2 = 0.1625
R indices (all data)	R1 = 0.0687, wR2 = 0.1770
Largest diff. peak and hole	0.714 and -0.185 eÅ ⁻³

	x	У	z	ए (eq)
(1)	-76(3)	4018(2)	11714 (1)	57(1)
(2)	2954 (3)	4339(2)	9565(1)	59(1)
)(3)	6539(3)	2471(2)	9695(1)	65(1)
(4)	7329(3)	1482(2)	11989(1)	60(1)
2(1)	2017(3)	4557 (2)	11554(2)	42(1)
2(2)	3413(4)	3958(2)	10519(2)	44(1)
C(3)	5235(4)	2909(2)	10676(2)	48(1)
C(4)	5725(4)	2457(2)	11720(2)	45(1)
C(5)	4463(4)	2992(2)	12800(2)	44(1)
C(6)	3344 (4)	4368(2)	12614(2)	42(1)
C(7)	1867(4)	4879(2)	13684(2)	54(1)
C(8)	1286(4)	6298(2)	13697(2)	48(1)
C (9)	2734 (4)	7032(3)	14164(2)	62(1)
C(10)	2188(5)	8334 (3)	14205(2)	67(1)
2(11)	211(5)	8927 (2)	13781(2)	64(1)
2(12)	-1236(5)	8224 (3)	13308(2)	65(1)
2(13)	-716(4)	6918(2)	13268(2)	57(1)
2(14)	5374(7)	1809(3)	8972 (3)	93(1)
C(15)	8997 (5)	884(3)	11163(2)	72(1)
C(16)	2804 (5)	2095(2)	13318(2)	62(1)

0(1)-C(1)	1,422(3)	O(2) - C(2)	1,223(3)	
0(3)-C(3)	1.391(3)	O(3) - C(14)	1,403(4)	
O(4) - C(4)	1.347(3)	O(4) - C(15)	1,422(3)	
C(1)-C(6)	1.521(3)	C(1) - C(2)	1,521(3)	
C(2) - C(3)	1.451(3)	C(3) - C(4)	1,347(3)	
C(4) - C(5)	1,508(3)	C(5) - C(16)	1.538(3)	
C(5)-C(6)	1.538(3)	C(6) - C(7)	1.541(3)	
C(7)-C(8)	1.507(3)	C(8) - C(13)	1.386(3)	
C(8)-C(9)	1.391(4)	C(9) - C(10)	1,384(4)	
C(10)-C(11)	1.362(4)	C(11) - C(12)	1.372(4)	
C(12)-C(13)	1.388(4)			
C(3)-O(3)-C(14)	115.0(2)	C(4)-O(4)-C(15)	122.13(19)	
O(1)-C(1)-C(6)	110.74(17)	0(1)-C(1)-C(2)	107.82(18)	
C(6)-C(1)-C(2)	112.29(16)	0(2)-C(2)-C(3)	120.7(2)	
O(2)-C(2)-C(1)	120.01(19)	C(3)-C(2)-C(1)	119.27(18)	
C(4) - C(3) - O(3)	122.5(2)	C(4)-C(3)-C(2)	121.46(19)	
0(3)-C(3)-C(2)	115.82(18)	O(4)-C(4)-C(3)	127.7(2)	
O(4)-C(4)-C(5)	108.81(17)	C(3)-C(4)-C(5)	123.44(19)	
C(4)-C(5)-C(16)	110.23(19)	C(4)-C(5)-C(6)	111.19(16)	
C(16)-C(5)-C(6)	115.04(18)	C(1)-C(6)-C(5)	113.09(17)	
C(1)-C(6)-C(7)	112.43(17)	C(5)-C(6)-C(7)	111.42(17)	
C(8)-C(7)-C(6)	114.35(18)	C(13)-C(8)-C(9)	117.6(2)	
C(13)-C(8)-C(7)	121.6(2)	C(9)-C(8)-C(7)	120.7(2)	
C(10)-C(9)-C(8)	121.2(2)	C(11)-C(10)-C(9)	120.4(3)	
C(10)-C(11)-C(12)	119.5(3)	C(11)-C(12)-C(13)	120.7(3)	
C(8)-C(13)-C(12)	120.6(2)			

	11					
	Ull	U22	U33	U23	U13	U12
0(1)	38(1)	71(1)	62(1)	18(1)	-7(1)	-8(1)
0(2)	58(1)	74(1)	41(1)	7(1)	-10(1)	6(1)
0(3)	63(1)	80(1)	47(1)	-5(1)	0(1)	6(1)
0(4)	65(1)	60(1)	48(1)	2(1)	-4(1)	19(1)
C(1)	39(1)	44(1)	42(1)	5(1)	-1(1)	-2(1)
C(2)	41(1)	53(1)	38(1)	5(1)	-6(1)	-6(1)
C(3)	48(1)	57(1)	37(1)	-6(1)	-2(1)	2(1)
C(4)	45(1)	45(1)	44(1)	0(1)	-6(1)	1(1)
C(5)	45(1)	50(1)	35(1)	3(1)	-4(1)	1(1)
C(6)	43(1)	45(1)	38(1)	1(1)	0(1)	-3(1)
C(7)	59(1)	57(1)	40(1)	1(1)	6(1)	2(1)
C(8)	51(1)	57(1)	34(1)	-5(1)	4(1)	1(1)
C(9)	54(1)	80(2)	49(1)	-12(1)	-6(1)	-1(1)
C(10)	77 (2)	70(2)	58(2)	-21(1)	-2(1)	-18(1)
C(11)	83 (2)	55(1)	51(1)	-11(1)	7(1)	-3(1)
C(12)	66 (2)	63 (2)	60(2)	-7(1)	-6(1)	10(1)
C(13)	53(1)	59(1)	58(1)	-9(1)	-7(1)	-4(1)
C(14)	117 (3)	96(2)	60(2)	-30(2)	-21(2)	16(2)
C(15)	73 (2)	71(2)	62(2)	-6(1)	-2(1)	26(1)
C(16)	70(2)	54(1)	59(1)	14(1)	7(1)	-3(1)

