Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Supplementary Information

PhI(OAc)₂ mediated decarboxylative sulfonylation of β -aryl- α , β -unsaturated carboxylic acids:

A synthesis of (*E*)-vinyl sulfones

Praewpan Katrun,^a Sornsiri Hlekhlai,^a Jatuporn Meesilp,^a Manat Pohmakotr,^a Vichai Reutrakul,^a Thaworn Jaipetch,^b Darunee Soorukram^a and Chutima Kuhakarn^{*a}

^aDepartment of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand. ^bMahidol University and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Kanchanaburi Campus, Saiyok, Kanchanaburi 71150, Thailand.

E-mail: chutima.kon@mahidol.ac.th

Contents

General information	S2
General procedure for the decarboxylative sulfonylation of β -aryl- α , β -unsaturated carboxylic acids	S2
¹ H and ¹³ C NMR spectra of products	S3-S35

General information

All isolated compounds were characterized on the basis of ¹H NMR and ¹³C NMR spectroscopic data, IR spectra, and HRMS data. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AscendTM spectrometer. ¹H NMR and ¹³C NMR chemical shifts are reported in ppm using tetramethylsilane (TMS) as an internal standard or residual nondeuterated solvent peak as an internal standard. Infrared spectra were recorded with a Bruker ALPHA FT-IR spectrometer. High-resolution mass spectra (HRMS) were recorded with a Bruker micro TOF spectrometer in the ESI mode. Melting points were recorded with a Sanyo Gallenkamp apparatus. Reactions were monitored by thin-layer chromatography and visualized by UV and a solution of KMnO₄. Cinnamic acids **1a**, **1g**, **1j**, **1k**, **1n**, **1q** and solvents were obtained from commercial sources and used without further purification. Unless otherwise noted, α_{β} -unsaturated carboxylic acid were synthesized according to literature procedures via Wittig reaction and Horner-Wadsworth-Emmons reaction. Purification of the reaction products was carried out by column chromatography on silica gel (0.063–0.200 mm). After column chromatography, analytically pure solid was obtained by crystallization from CH₂Cl₂–hexanes.

General procedures: Synthesis of vinyl sulfone from β -aryl- α , β -unsaturated carboxylic acid and sodium sulfinate. DIB (161.1 mg, 0.50 mmol) was added to a solution of β -aryl- α , β -unsaturated carboxylic acid (0.25 mmol) and sodium sulfinate (1.0 mmol) in DMF (3 mL) at room temperature and then reaction mixture was stirred at 100 °C under air for 10-30 minutes. After completion of the reaction, the reaction was cooled to room temperature and was diluted with water (10 mL). Further stirring was followed by extraction with EtOAc (2 × 20 mL). The combined organic extracts were washed with H₂O (20 mL) and brine (20 mL), dried (MgSO₄), filtered, and concentrated (aspirator). The residue was purified by column chromatography using EtOAc–hexanes as eluent to afford the corresponding product.

0, 0 S F 3b

3175.592 3168.540 3168.540 3061.195 3051.432 3051.432 3051.446 3024.349 3024.349 3022.252 2091.292 2991.292 2994.490 2296.001 2295.319 2295.319 2285.318 2285.317 2287.317 2285.317 2287.317 228

630.765

