Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Herdewijn et al.

Supporting Information

Supporting Information

Aspartic Acid Based Phosphoramidate Prodrugs as Potent Inhibitors of Hepatitis C Virus Replication

Munmun Maiti,^a Mohitosh Maiti,^a Jef Rozenski,^a Steven De Jonghe^{a,b} and Piet Herdewijn*^{a,b}

^{*a*} Rega Institute for Medical Research, Medicinal Chemistry, KU Leuven, Minderbroedersstraat 10, 3000 Leuven, Belgium

^b Interface Valorisation Platform, KU Leuven, Kapucijnenvoer 33, 3000 Leuven, Belgium

Table of contents:

Page No.

•	Scheme S1	S2
•	Synthetic procedure and characterization data for Scheme S1	S2-S4
•	Figure S1	S5
•	Figure S2	S6
•	NMR spectra of final compounds	S7-S55
•	Analytical HPLC profile of purified compounds	S56-S65

Scheme S1 Synthesis of fluorinated nucleoside 3. Reagents and conditions: a) Li(O-tBu)₃AlH, THF, -20 °C; b) Ac₂O, DMAP, -20 °C; c) N^4 -benzoylcytosine, N, O-bis(trimethylsilyl)acetamide, SnCl₄, PhCl, 65 °C, 16 h; d) 75% aqueous acetic acid, 110 °C, 5 h; e) ~7 N NH₃ in MeOH, rt, 30 h.

1-*O*-Acetyl-3,5-di-*O*-benzoyl-2-deoxy-2-fluoro-2-*C*-methyl-α,β-D-ribofuranose (27).

Protected lactone **26** (2 g, 5.4 mmol) was dissolved in dry tetrahydrofuran (45 mL) under nitrogen atmosphere and the solution was cooled to -20 °C. Lithium tri-*tert*-butoxyaluminium hydride (1.0 M in THF, 6.5 mL, 6.5 mmol) was added dropwise over 20 min while maintaining the temperature near -20 °C. Upon completion of the reaction (~ 3 h) based on TLC, that is the formation of lactol ($R_f = 0.36$, 2:8 EtOAc/Hexane), DMAP (66 mg, 5.4 mmol) and acetic anhydride (4.7 mL, 49.4 mmol) were added to the reaction mixture at -20 °C and stirred for 1.5 h. The reaction mixture was diluted with ethyl acetate and water. The organic layer was collected and the aqueous layer was extracted three times with ethyl acetate. The combined organic layer was dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure to obtain crude acetate **27** which was purified by flash column chromatography using 0-15% EtOAc in hexane to obtain the pure product as clear oil in 95% yield. $R_f = 0.5$ (2:8 EtOAc/Hexane). ¹H NMR (500 MHz, DMSO-d6): $\delta = 8.03$ -8.01 (m, 4H, Ar-H), 7.99-7.94 (m, 4H, Ar-H), 7.74-7.70

(m, 2H, Ar-H), 7.68-7.65 (m, 2H, Ar-H), 7.59-7.56 (m, 4H, Ar-H), 7.52-7.49 (m, 4H, Ar-H), 6.19 (d, 1H, J = 4.33 Hz, H-1a), 6.09 (d, 1H, J = 9.65 Hz, H-1b), 5.62 (dd, J = 7.97, 24.50 Hz, 1H, H-3a), 5.62 (dd, J = 6.25, 8.59 Hz, 1H, H-3b), 4.75-4.72 (m, 1H, H-4a), 4.67-4.61 (m, 3H, H-4b & H-5a), 4.57-4.41 (m, 2H, H-5b), 2.14 (s, 3H, OAc-a), 1.92 (s, 3H, OAc-b), 1.62 (d, 3H, J = 22.96 Hz, CH₃-a), 1.50 (d, 3H, J = 23.37 Hz, CH₃-b); ¹³C NMR (125 MHz, DMSO-d6): $\delta = 168.9$, 168.3 (CO of -OAc), 165.0, 164.8, 164.7, 164.5 (CO of Bz), 133.6, 133.5, 133.2 (Ar-C), 129.2-128.1 (Ar-C), 100.2, 97.4, 95.3, 93.7 (C-1a, C-1b, C-2a & C-2b), 79.0, 77.9 (C-4a, C-4b), 73.3, 73.2, 72.7, 72.6 (C-3a, C-3b), 63.0, 62.6 (C-5a, C-5b), 20.4-20.0 (CH₃), 15.8, 15.6 (-CH₃); HRMS (ESI+) calcd for C₂₂H₂₁F₁O₇Na [M+Na]⁺ 439.1164, found 439.1160.

3',5'-di-O-benzoyl-2'-deoxy-2'-fluoro-2'-C-methyl-N⁴-benzoyl-cytidine (28). To a suspension of N^4 -benzoylcytosine (1.74 g, 8.0 mmol) in anhydrous chlorobenzene (24 mL), N,Obis(trimethylsilyl)acetamide (4.5 mL, 18 mmol) was added and the suspension was heated to 80 °C for 2 h. To the clear resultant solution was then cooled to room temperature. A solution of acetate sugar 27 (1.68 g, 4.0 mmol) in chlorobenzene (12 mL) was then added to the silvlated base. To this, neat tin (IV) chloride (2.4 mL, 20 mmol) was added dropwise and was heated to 65 °C for 16 h. The reaction mixture was cooled to room temperature and diluted with ethyl acetate. Cold saturated sodium bicarbonate solution was added and the white suspension was then filtered through a celite pad. The organic layer was separated and the aqueous layer was extracted with ethyl acetate several times. The combined organic layer was washed with brine, dried over anhydrous MgSO₄, filtered and concentrated under reduced pressure to obtain the crude product (a mixture of α (28a) and β (28) isomer) which was purified by flash column chromatography eluting with 20-40% EtOAc in hexane to obtain the pure β -isomer (28) in 26% yield. $R_f = 0.34$ for β -isomer (1:1 EtOAc/Hexane) and $R_f = 0.2$ for α -isomer (1:1 EtOAc/Hexane). β isomer (28): ¹H NMR (500 MHz, CDCl₃): $\delta = 8.70$ (br s, 1H, NH), 8.10-8.06 (m, 5H, Ar-H), 7.89 (d, J = 7.03 Hz, 2H), 7.69-7.61 (m, 3H, Ar-H), 7.55-7.46 (m, 7H, Ar-H), 6.19 (br d, 1H, J =16.59 Hz, H-1'), 5.55 (br dd, J = 8.6, 20.7 Hz, 1H, H-3'), 4.88 (dd, J = 2.4, 12.7 Hz, 1H, H-5'), 4.72 (m, 1H, H-4'), 4.63 (dd, J = 3.27, 12.7 Hz, 1H, H-5"), 1.48 (d, 3H, J = 22.4 Hz, -CH₃); HRMS (ESI+) calcd for $C_{31}H_{27}F_1N_3O_7[M+H]^+$ 572.1827, found 572.1832.

3',5'-Di-*O***-benzoyl-2'-deoxy-2'-fluoro-2'-***C***-methyl-uridine (29).** A suspension of compound **28** (0.58 g, 1.0 mmol) in 75% aqueous acetic acid (30 mL) was heated to 110 °C for 5 h. The clear solution was cooled to room temperature and concentrated to dryness under reduced pressure and coevaporated with methanol/water (1:1) for three times to remove traces of acetic acid. The compound **29** was used as such without further purification for the next step. Yield: 90%, $R_f = 0.45$ (EtOAc/Hexane , 1:1). ¹H NMR (300 MHz, CDCl₃ + CD₃OD): $\delta = 8.05$ -7.96 (m, 4H, Ar-H), 7.61-7.40 (m, 7H, Ar-H & H-6), 6.22 (d, 1H, J = 19.05 Hz, H-1'), 5.51 (dd, J = 9.47, 21.2 Hz, 1H, H-3'), 5.42 (d, 1H, J = 8.11 Hz, H-5), 4.84 (dd, J = 2.65, 12.7 Hz, 1H, H-5'), 4.60 (m, 1H, H-4'), 4.49 (dd, J = 3.45, 12.7 Hz, 1H, H-5'') , 1.42 (d, 3H, J = 22.4 Hz, -CH₃); HRMS (ESI+) calcd for C₂₄H₂₁F₁N₂O₇Na [M+Na]⁺ 491.1225, found 491.1229.

2'-deoxy-2'-fluoro-2'-*C***-methyl-uridine (3).** NH₃ in methanol (~ 7 N, 30 mL) was added to compound **29** (0.5 g, 1.0 mmol) and was stirred 30 h at room temperature. The reaction mixture was evaporated with silica gel and chromatographed on a flash silica gel column eluting with CH₂Cl₂/MeOH/NH₃ (9.0:1.0:0.2) to obtain compound **3** as white solid (62%). TLC (CH₂Cl₂/MeOH/NH₃, 9.0:1.0:0.2): $R_f = 0.23$. ¹H NMR (600 MHz, CD₃OD): $\delta = 8.07$ (d, J = 7.89 Hz, 1H, H-6), 6.12 (d, 1H, J = 18.53 Hz, H-1'), 5.71 (d, J = 7.89 Hz, 1H, H-5), 4.02-3.79 (m, 4H, H-3', H-4', H-5' & H-5''), 1.35 (d, 3H, J = 22.3 Hz, CH₃); ¹³C NMR (150 MHz, CD₃OD): $\delta = 165.8$ (C-4), 152.3 (C-2), 141.8 (C-6), 102.9 (C-5), 102.0 (d, J = 181.0, C-2'), 90.5 (br d, C-1'), 83.3 (C-4'), 72.4 (d, J = 18.0, C-3'), 60.0 (C-5'), 16.8 (d, J = 25.5, -CH₃). HRMS (ESI+) calcd for C₁₀H₁₃F₁N₂O₅Na [M+Na]⁺ 283.0701, found 283.0709.

Fig S1 Liquid chromatograms of compound **2c** which is subjected to human liver S9 metabolism study. Retention times 0.38 min and 0.36 min correspond to intermediate and final monophosphate formation, respectively.

Fig S2 The molecular mass corresponding to the intermediate at retention time 0.38 min (m/z = 542 in negative mode, top spectrum) and 2'-Me-U-monophosphate at retention time 0.36 min (m/z = 337 in negative mode, middle spectrum).

Compound 1a

¹H spectrum

Compound 1a

Compound 1b

¹H spectrum

Compound 1b

Compound 1b

Compound 1c

¹H spectrum

Compound 1c

Compound 1c

Compound 1d

¹H spectrum

Compound 1d

Compound 1d

Compound 1e

¹H spectrum

Compound 1e

Compound 1e

Compound 1f

¹H spectrum

Compound 1f

Compound 1f

Compound 1g

¹H spectrum

Compound 1g

Compound 1g

Compound 1h

¹H spectrum

Compound 1h

Compound 1h

Compound 1i

¹H spectrum

Compound 1i

Compound 1i

Compound 2a

¹H spectrum

Compound 2a

Compound 2a

Compound **2b**

¹H spectrum

Compound **2b**

Compound 2b

Compound 2c

¹H spectrum

Compound 2c

Compound 2c

Compound 2d

¹H spectrum

Compound 2d

Compound 2d

Compound 2e

¹H spectrum

Compound 2e

Compound 2e

Compound 2f

¹H spectrum

Compound 2f

Compound 2f

Compound **2g**

¹H spectrum

Compound 2g

Compound 2g

Compound **2h**

¹H spectrum

Compound **2h**

Compound 2h

Compound 2i

¹H spectrum

Compound 2i

Compound 2i

Compound **3a**

¹H spectrum

Compound 3a

Compound 3a

Compound **3b**

¹H spectrum

Compound **3b**

¹H spectrum

Compound 5

¹H spectrum

Compound 6

¹H spectrum

Compound 7

¹H spectrum

Compound 8

¹H spectrum

Compound 10

¹H spectrum

Compound 11

Analytical HPLC for final compounds was performed on a Inertsil ODS-3 (C-18) (4.6 x 100 mm) column, connected to a Shimadzu LC-20AT pump using a Shimadzu SPD-20A UV-detector, using water and acetonitrile as the eluents. The gradient program used contained following steps: 0-15 min 30% CH₃CN in H₂O; 15-25 min 30% to 90% CH₃CN in H₂O; 25-35 min 90% to 30% CH₃CN in H₂O. All recordings were performed at 254 nm.

Compound 1

Compound 1a

Compound 1b

Compound 1c

Compound 1d

Compound 1e

Compound 1f

Compound 1g

Compound 2a

Compound 2b

mV

Compound 2c

Compound 2d

mV

Compound 2e

Compound 2f

Compound 2g

Compound 3a

Compound **3b**

