Supporting Information

Molecular Design and Synthesis of a pH Independent and Cell Permeant Fluorescent Dye and its Applications

Xiaojie Jiao,[†] Chang Liu,^{†, ‡} Kun Huang,^{†, ‡} Siwen Zhang,[†] Song He,[†] Liancheng Zhao^{†, ‡} and Xianshun Zeng^{*†}

[†] Tianjin Key Laboratory for Photoelectric Materials and Devices, School of Material Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.

[‡] School of Materials Science and Engineering, Institute of Information Functional Materials & Devices, Harbin Institute of Technology, Harbin 150001, China.

solvents	$\lambda_{abs}(\varepsilon)$		2	achuanta	$\lambda_{abs}(\epsilon)$		1
	-TFA ^a	+TFA ^b	۸ _{em}	sorvents	-TFA	+TFA	Λ _{em}
C_7H_8	582(200)	582(45800)	624	CH ₃ CN	576(400)	576(52400)	618
CH ₂ Cl ₂	581(2400)	581 (66000)	619	СН₃ОН	568(12000)	579(63000)	622
THF	c	582(29700)	621	EtOH	575(1100)	581(68500)	625
AcOEt	579(100)	579(42800)	619	DMSO	592(1500)	587(39700)	632
CHCl ₃		581(64000)	624	DMF		584(46300)	629
$C_4H_8O_2$	568(1000)	578(7600)	621	H_2O	572(38100)	576(38400)	620
C ₃ H ₆ O	578(300)	578(47800)	620				

Table S1 Absorbance and emission properties of the dye 1 in different solvents.

Notes: a: "-TFA" without TFA; b: "+TFA" with 1% TFA; c: "--" means the absorbance value is negative.

Fig. S1 Absorption spectra of $1(10 \ \mu\text{M})$ in different pH solution. a) Absorption spectra of 1 under different pH conditions in water. b) Absorbances of 1 at 578 nm under different pH conditions. c) The pKa (3.01) of the interconversions between cationic and neutral forms derived from the absorbance at 578 nm. d) The pKa (10.0) of the interconversions between neutral and anionic forms derived from the absorbance at 578 nm.

Fig. S2 Emission spectra of the dye 1 (5 μ M) in different pH solution. a) Emission spectra of 1 under different pH conditions in water. b) Fluorescence intensities of 1 at 617 nm under different pH conditions. c) The pKa (3.4) of the interconversions between cationic and neutral forms derived from the emission intensities at 617 nm. d) The pKa (10.1) of the interconversions between neutral and anionic forms derived from the emission intensities at 617 nm. ($\lambda_{ex} = 540$ nm, slit = 5 nm, 10 nm).

Fig. S3 Images of L929 cells incubated with the dye 1 (15 μ M). a) and b) fluorescence and brightfield image after staining for 45 min. c) and d) fluorescence and brightfield image after staining for 24 h.

Fig. S4 Absorbance of the hydrazide 5 (5 μ M) at varied concentrations of Hg²⁺ in EtOH/H₂O (1:3, v/v).

Fig. S5 Color changes of **5** $(1 \times 10^{-5} \text{ M})$ in the presence of 5.0 equiv of various ions in ethanol / water (v / v; 1:3).

Figure S6. HRMS spectra of the reaction mixture of **5** with Hg²⁺. The peak (m/z) at 452.1981 corresponds to the chemosensor **5** $[\mathbf{5} + H]^+$ ion (Calcd: 452.1969). The peak (m/z) at 438.1716 corresponds to $[\mathbf{1} + H]^+$ ion (Calcd: 438.1705).

Thus, we suggested that the selective optical responsive mechanism was the Hg^{2+} -promoted hydrolysis as shown in the following scheme.

Fig. S7 Emission (at 621 nm) of the hydrazide **5** at different concentrations of Hg²⁺ (0, 0.004, 0.008, 0.012, 0.016, 0.02, 0.024 μ M) added, normalized between the minimum emission (0.0 μ M Hg²⁺) and the emission at 0.023 μ M Hg²⁺. The fluorescence intensities were linearly proportional to the amount of Hg²⁺ in this range, and this demonstrated the detection limit is as sensitive as 2.89×10^{-9} M.

Fig. S8 Job's plot of the interactions between **5** and Hg^{2+} in EtOH/water (1:3, v/v) showing the 1:1 stoichiometry. Total concentration of **5** and Hg^{2+} was kept constant at 10.0 μ M. Emission intensity is recorded at 621 nm.

Fig. S9 UV-vis spectra of the hydrazide **5** (10 μ M) in the presence of nitrate salts (5.0 equiv) of Na⁺, K⁺, NH₄⁺, Ag⁺, Mg²⁺, Ca²⁺, Pb²⁺, Hg²⁺, Co²⁺, Cd²⁺, Zn²⁺, Ni²⁺, Cu²⁺, Cr³⁺, Fe²⁺, Fe³⁺, and Al³⁺ in ethanol/H₂O (v/v, 1:3).

Fig. S10. ¹H NMR of **1** (400 MHz, DMSO-d₆).

Fig. S11. ¹³C NMR of 1 (100 MHz, DMSO-d₆).

Fig. S12. HRMS (LC/MS) spectra of 1. The peak at m/z = 438.1705 was assigned to the mass of $1+H^+$.

Fig. S13. ¹H NMR of 2 (400 MHz, CDCl₃).

Fig. S15. HRMS (LC/MS) spectra of **2**. The peak at m/z = 478.2012 was assigned to the mass of **2**+H⁺.

Fig. S16. ¹H NMR of 3 (400 MHz, CDCl₃).

Fig. S17. ¹³C NMR of 3 (100 MHz) in CDCl₃

Fig. S18. HRMS (LC/MS) spectra of **3**. The peak at m/z = 573.2024 was assigned to the mass of **3**+H⁺.

Fig. S19. ¹H NMR of 4 (400 MHz, CDCl₃).

Fig. S20 ¹³C NMR of 4 (100 MHz) in CDCl₃

Fig. S21 HRMS (LC/MS) spectra of **4**. The peak (m/z) at 668.1336 and the peak (m/z) at 604.1707 corresponded $(M + H)^+$ and $(M + H - SO_2)^+$, respectively.

Fig. S22 ¹H NMR of 5 (400 MHz, DMSO-d₆).

Fig. S23 13 C NMR of 5 (100 MHz) in DMSO-d₆

Fig. S24 HRMS (LC/MS) spectra of 5. The peak (m/z) at 452.1974 corresponded $(M + H)^+$.