Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Supporting information for

An efficient total synthesis of leukotriene B4

Karoline Gangestad Primdahl^a, Jørn Eivind Tungen,^a Marius Aursnes,^a Trond V. Hansen^a and Anders Vik^{*,a}

^aSchool of Pharmacy, Department of Pharmaceutical Chemistry, University of Oslo, PO Box 1068 Blindern, N-0316 Oslo, Norway *E-mail: anders.vik@farmasi.uio.no

Table of Contents:

General

Information	S1
Preparation of fragments 6, 9, 11, 13 and 17 - 19	
NMR spectra of compounds 7 , 15 , 20 – 23 and 1 (Figures S1-S14)	S8
UV/Vis spectra of 23 and 1 (Figures S15 and S16)	S15
References	S16

General Information

Unless stated otherwise, all commercially available reagents and solvents were used in the form they were supplied without any further purification. The stated yields are based on isolated material. All reactions were performed under an argon atmosphere using Schlenk techniques. Reaction flasks were covered with aluminium foil during reactions and storage to minimize exposure to light. Thin layer chromatography was performed on silica gel 60 F_{254} aluminum-backed plates fabricated by Merck. Flash column chromatography was performed on silica gel 60 (40-63 µm) produced by Merck. NMR spectra were recorded on a Bruker AVI600, Bruker AVII400 or a Bruker DPX300 spectrometer at 600 MHz, 400 MHz or 300 MHz respectively for ¹H NMR and at 150 MHz, 100 MHz or 75 MHz respectively for ¹³C NMR. Coupling constants (*J*) are reported in hertz and chemical shifts are reported in parts per million (δ) relative to the central residual protium solvent resonance in ¹H NMR (CDCl₃ = δ

7.26, DMSO- $d_6 = \delta$ 2.50 and MeOD- $d_4 = \delta$ 3.31) and the central carbon solvent resonance in ¹³C NMR (CDCl₃ = δ 77.00 ppm, DMSO- $d_6 = \delta$ 39.43 and MeOD- $d_4 = \delta$ 49.00). Mass spectra were recorded at 70 eV on Waters Prospec Q spectrometer using EI, ES or CI as the methods of ionization. High resolution mass spectra were recorded on Waters Prospec Q spectrometer using EI or ES as the methods of ionization. Optical rotations were measured using a 1 mL cell with a 1.0 dm path length on a Perkin Elmer 341 polarimeter. HPLC analyses were performed on an Agilent Technologies 1200 Series instrument with diode array detector set at 254 nm and equipped with a C₁₈ stationary phase (Eclipse XDB-C18 5µm 4.6 × 150 mm), applying the conditions stated. The UV/Vis spectra from 190-900 nm were recorded using a Biochrom Libra S32PC spectrometer using quartz cuvettes. Diastereomeric ratios reported in this paper have not been validated by calibration, please see reference Wernerova and Hudlicky¹ for discussions and guidelines.

(S)-3-((tert-Butyldimethylsilyl)oxy)dihydrofuran-2(3H)-one (11).

Following the procedure reported by Corey and coworkers,² alcohol **10** (5.00 g, 49.0 mmol, 1.0 eq.) was dissolved in CH₂Cl₂ (250 mL) under argon. The solution was cooled to -78 °C and after ten minutes, 2.6-lutidine (17 mL, 14.0 mmol, 3.0 eq.) was added. After an additional ten minutes, TBSOTf (11.0 g, 49.0 mmol, 1.0 eq.) was added dropwise. The reaction mixture was stirred at -78 °C and it was allowed to reach room temperature over night. Sat. aq. NH₄Cl (50 mL) was added and the layers were separated. The aq. layer was extracted with CH₂Cl₂ (3×25 mL) and the combined organic layers were dried (Na₂SO₄). The solvent was removed *in vacuo* and the crude product was purified by flash chromatography on silica gel (hexane, then hexane/EtOAc 8:2) to afford the desired product **11** as a colourless oil. All spectroscopic and physical data were in full agreement with those reported in the 20

literature.³ Yield: 10.0 g (97%); TLC (hexane/EtOAc 8:2, KMnO₄ stain): $R_f = 0.29 [\alpha]^D = -31$ (c = 0.15, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 4.42 – 4.32 (m, 2H), 4.21 – 4.12 (m, 1H), 2.49 – 2.39 (m, 1H), 2.27 – 2.12 (m, 1H), 0.89 (s, 9H), 0.15 (s, 3H), 0.12 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.0, 68.3, 64.8, 32.4, 25.7, 18.3, -4.6, -5.2.

(S)-3-((tert-Butyldimethylsilyl)oxy)pent-4-yn-1-ol (13).

TBS-protected lactone 11 (1.50 g, 6.90 mmol, 1.0 eq.) was dissolved in CH₂Cl₂ (75 mL) and cooled to -78 °C. DIBAL-H (8.30 mL, 1.0 M in CH₂Cl₂, 8.30 mmol, 1.2 eq.) was added dropewise and the solution was stirred until completion by TLC (hexane/EtOAc 6:4) (~ two hours) at -78 °C. The reaction was stirred for another 30 minutes before a solution of sat. aq. Rochelle-salt (30 mL) was added. The reaction was allowed to reach rt. The layers were separated and the aq. layer was extracted with CH₂Cl₂ (3×35 mL) and the combined organic layers were dried (MgSO₄) and concentrated *in vacuo*. The crude lactol was azetroped with 2-Me-THF before beeing dissolved in THF (18 mL). LDA (17 mL, 1.0 M in THF/hexane) was diluted with THF (20 mL) and cooled to -78 °C. TMS-diazomethane (4.10 mL, 2.0 M in Et₂O) was added and the mixture was stirred for 30 minutes. To this solution, the THF-solution containing the crude lactol 12 was added as quickly as possible without allowing the reaction mixture to warm too much, and the combined mixture stirred for another two hours at -78 °C. The cooling bath was removed and the reaction was allowed to reach rt. slowly and then stirred for 30 minutes at rt. The solution was carefully quenched with sat. aq. NH₄Cl (20 mL). The layers were separated and the aq. layer was extracted with Et₂O (3×20 mL) and the combined organic layers were dried (MgSO₄) and concentrated *in vacuo*. The crude product was purified by flash chromatography on silica gel (hexane/EtOAc 8:2) to afford the desired product 13 as a colourless oil in 57% yield (0.85 g) from lactone 10; Spectroscopic and physical data were in agreement with those reported in the literature.^{4, 5}

20

TLC (hexane/EtOAc 8:2, KMnO₄ stain): $R_f = 0.21$; $[\alpha]^D = -55$ (c = 0.11, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 4.61 (ddd, J = 7.0, 5.1, 2.1 Hz, 1H), 3.89 (ddd, J = 11.8, 7.6, 4.2 Hz, 1H), 3.75 (ddd, J = 10.9, 6.1, 4.5 Hz, 1H), 2.47 (bs, 1H), 2.42 (d, J = 2.1 Hz, 1H), 2.02 – 1.82 (m, 2H), 0.88 (s, 9H), 0.14 (s, 3H), 0.12 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 84.8, 73.2, 61.8, 59.8, 40.2, 25.8, 18.2 (3C), -4.5, -5.1.

Potassium (1E,3E)-5-oxopenta-1,3-dien-1-olate (17).

Glutaconaldehyde potassium salt **17** was prepared from commercially available pyridinium-1-sulfonate (**16**) according to the procedure of Becher.⁶ Pyridinium-1-sulfonate **16** (60.8 g, 0.38 mol, 1.0 eq.) was added to a solution of KOH (87.5 g, 1.56 mol, 4.1 eq.) in H₂O (210 mL). The solution was stirred and cooled to -20 °C. After one hour, the temperature was slowly raised to 20 °C over four hours. The mixture was heated to 30–40 °C for 30 minutes and then cooled to 5 °C. The crude product that precipitated was filtered, washed with acetone (2×80 mL) and dried in the air, giving red-brown crystals. MeOH (1.40 L) was added to the crude product and the mixture was heated to reflux before activated carbon (2.80 g) was added. The carbon was filtered off and the filtrate was concentrated under reduced pressure to a volume of ~ 55 mL. The pale yellow crystals of glutaconaldehyde potassium salt **17** were collected, washed with acetone and dried. All spectroscopic and physical data were in full agreement with those reported in the literature.⁶ Yield: 28.5 g (55%); ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.67 (d, *J* = 9.2 Hz, 2H), 7.04 (t, *J* = 12.9 Hz, 1H), 5.10 (dd, *J* = 13.0, 9.1 Hz, 2H); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 184.4 (2C), 159.8, 106.2 (2C).

(2*E*,4*E*)-5-Bromopenta-2,4-dienal (9).

Bromopentadienal **9** was prepared by the bromination of glutaconaldehyde potassium salt **17** according to the protocol reported by Duhamel *et al.*⁷ Bromine (12.6 g, 78.8 mmol, 1.2 eq.) was added dropwise to a solution of triphenylphosphine (21,5 g, 81.9 mmol, 1.2 eq.) in CH₂Cl₂ (320 mL) at 0 °C. The reaction mixture was stirred for four hours at ambient temperature. The black/red-brown crude product was filtered trough a pad of silica giving a yellow oil which was futher purified by flash chromatography on silica gel (hexane/EtOAc 9:1) to affording a mixture of the *E,E*- and the *E,Z*-isomer (3:1). The mixture was dissolved in Et₂O (125 mL). *p*-TsOH (600 mL) was added and the solution was stirred for five minutes before being concentrated *in vacuo*. The slurry was dissolved in Et₂O (30.0 mL), filtered trough

a pad of silica and consentrated *in vacuo* to afford the product **9** as a yellow oil. All spectroscopic and physical data were in agreement with those reported in the literature.⁷ Yield: 8.10 g (75%); ¹H NMR (300 MHz, CDCl₃) δ 9.58 (d, *J* = 7.8 Hz, 1H), 7.07 – 6.90 (m, 3H), 6.24 – 6.11 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 193.3, 147.9, 135.7, 132.0, 120.0.

(*R*,4*E*,6*E*)-7-Bromo-3-hydroxy-1-((*S*)-4-isopropyl-2-thioxothiazolidin-3-yl)hepta-4,6-dien-1-one (18)

The (*R*)-aldol product **18** was prepared according to the procedure of Olivo and coworkers.⁸ To a solution of *N*-acetylthiazolidinethione **8** (5.0 g, 24.6 mmol, 1.0 eq.) in CH₂Cl₂ (245 mL), TiCl₄ (4.66 g, 1.0M in CH₂Cl₂, 24.6 mmol, 1.0 eq.) was added at -78 °C and stirred for five minutes. Hünig's base (3.81 g, 29.5 mmol, 1.2 eq.) in CH₂Cl₂ (61 mL) was added and the solution was stirred for 30 min at -78 °C, whereupon the freshly prepared aldehyde **9** (3.56 g, 22.1 mmol, 0.90 eq.) in CH₂Cl₂ (61 mL) was added dropwise. The mixture was stirred for one hour at -78 °C and then quenched with half aq. saturated NH₄Cl (100 mL), before it was warmed to room temperature. The layers were separated and the aq. layer was extracted with CH₂Cl₂ (80 mL). The combined organic layers were dried with Na₂SO₄, filtered and concentrated *in vacuo*. The crude product **18** as a yellow oil. All spectroscopic and physical data 20

were in full agreement with those reported in the literature.⁸ Yield: 7.41 g (92%); $[\alpha]^{D} = 271$ (c = 0.13, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 6.72 (dd, J = 13.5, 10.8 Hz, 1H), 6.35 (d, J = 13.6 Hz, 1H), 6.26 (ddd, J = 15.3, 10.8, 1.5 Hz, 1H), 5.79 (dd, J = 15.3, 5.4 Hz, 1H), 5.16 (dd, J = 7.8, 6.4 Hz, 1H), 4.76–4.65 (m, 1H), 3.70 (dd, J = 17.6, 3.1 Hz, 1H), 3.53 (dd, J = 11.5, 7.9 Hz, 1H), 3.29 (dd, J = 17.6, 8.6 Hz, 1H), 3.04 (dd, J = 11.6, 1.1 Hz, 1H), 2.93 (d, J = 4.5 Hz, 1H), 2.36 (dq, J = 13.6, 6.8 Hz, 1H), 1.07 (d, J = 6.7 Hz, 3H), 0.99 (d, J = 6.9 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 203.1, 172.3, 136.7, 134.8, 128.0, 109.6, 71.5, 68.1, 45.1, 31.0, 30.8, 19.2, 18.0. The diastereometic ratio (15.3:1) of the crude product was determined by HPLC analysis (Eclipse XDB-C18, MeOH/H₂O 70:30, 1.0 mL/min, t_r(minor) = 8.65 min and t_r(major) = 10.85 min).

(*R*,4*E*,6*E*)-7-Bromo-3-((*tert*-butyldimethylsilyl)oxy)-1-((*S*)-4-isopropyl-2-thioxothiazolidin-3-yl)hepta-4,6-dien-1-one (19).

Following the procedure reported by Corey and coworkers,² the aldol product **18** (3.30 g, 9.10 mmol, 1.0 eq.) was dissolved in CH₂Cl₂ (90 mL) under argon. The solution was cooled to -78 °C, and after ten minutes, 2.6-lutidine (2.91 g, 27.2 mmol, 3.0 eq.) was added. After an additional ten minutes, TBSOTF (3.11 g, 11.8 mmol, 1.3 eq.) was added dropwise. The reaction mixture was stirred at -78 °C for two hours. Sat. aq. NH₄Cl (80 mL) was added and the layers were separated. The aq. layer was extracted with CH₂Cl₂ (3×50 mL) and the combined organic layers were dried (Na₂SO₄). The solvent was removed *in vacuo* and the residue was purified by column chromatography on silica gel (hexane/EtOAc 98:2) to afford the desired product **19** as a yellow oil. All spectroscopic and physical data were in full $_{20}$

agreement with those reported in the literature.⁹ Yield: 4.21 g (97%); $[\alpha]^{D} = 263$ (c = 0.50, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 6.69 (dd, J = 13.4, 10.7 Hz, 1H), 6.31 (d, J = 13.5 Hz, 1H), 6.15 (dd, J = 15.5, 11.1 Hz, 1H), 5.79 (dd, J = 14.9, 6.6 Hz, 1H), 5.04 (t, J = 7.0 Hz, 1H), 4.75 (q, J = 6.4 Hz, 1H), 3.64 (dd, J = 16.6, 7.8 Hz, 1H), 3.47 (dd, J = 10.9, 7.9 Hz, 1H), 3.21 (dd, J = 16.4, 4.6 Hz, 1H), 3.03 (d, J = 11.6 Hz, 1H), 2.48 – 2.26 (m, 1H), 1.06 (d, J = 7.2 Hz, 3H), 0.97 (d, J = 7.1 Hz, 3H), 0.86 (s, 9H), 0.05 (s, 3H), 0.03 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 202.9, 170.9, 136.8, 127.4, 109.1, 71.8, 69.8, 46.2, 31.0, 30.9, 25.9 (3C), 19.3, 18.2, 17.9, -4.2, -4.8.

(R,4E,6E)-7-Bromo-3-((tert-butyldimethylsilyl)oxy)hepta-4,6-dienal (6).

Aldehyde **6** was prepared by a DIBAL-H reduction of the protected thiazolidinethione **19** according to the procedure of Olivo *et al.*⁹ DIBAL-H (2.50 mL, 1.0 M in hexane, 1.2 eq.) was added to a stirred solution of thiazolidinethione **19** (1.00 g, 2.08 mmol, 1.0 eq.) in CH₂Cl₂ (40 mL) at -78 °C. The mixture

was stirred for three hours and then quenched with sat. aq. NaHCO₃ (20 mL). The cooling bath was removed and solid Na-K tartrate (~ 0.70 g) (Rochelle-salt) was added and stirring was continued for another 40 min. Et₂O (70 mL) was added. The layers were separated and the aq. layer was extracted with Et₂O (3×60 mL). The combined organic layers were dried (Na₂SO₄) and concentrated *in vacuo*. The residue was purified by column chromatography on silica gel (hexane/EtOAc 95:5) to afford the title compound **6** as yellow oil. All spectroscopic and physical data were in full agreement with those 20

reported in the literature.⁹ [α] D = 32 (c = 0.20, CHCl₃); ¹H NMR (300 MHz, CDCl₃) δ 9.75 (t, J = 2.2 Hz, 1H), 6.69 (dd, J = 13.4, 10.8 Hz, 1H), 6.33 (d, J = 13.6 Hz, 1H), 6.16 (ddd, J = 15.2, 10.6, 1.3 Hz, 1H), 5.75 (ddd, J = 15.3, 5.9, 0.8 Hz, 1H), 4.66 (dd, J = 6.8, 5.5 Hz, 1H), 2.75 – 2.41 (m, 2H), 0.87 (s, 9H), 0.06 (s, 3H), 0.04 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 201.2, 136.6, 136.1, 127.6, 109.6, 68.5, 51.4, 25.9, 14.3, -4.2, -4.9.

Figure S-8 ¹³C NMR spectrum of compound 21.

Figure S-11 ¹H NMR spectrum of compound 23.

Figure S-12 ¹³C NMR spectrum of compound 23.

Figure S-15 UV-Vis chromatogram of the methyl ester 23.

Figure S-16 UV-Vis chromatogram of LTB₄ (1).

References

- 1. M. Wernerova and T. Hudlicky, *Synlett*, 2010, 2701.
- 2. E. J. Corey, H. Cho, C. Ruecker and D. H. Hua, *Tetrahedron Lett.*, 1981, 22, 3455.
- 3. D. Schinzer, A. Bauer and J. Schieber, *Chem. Eur. J.*, 1999, **5**, 2492.
- 4. S. Takano, T. Sugihara and K. Ogasawara, *Tetrahedron Lett.*, 1991, **32**, 2797.
- J. E. Tungen, M. Aursnes, J. Dalli, H. Arnardottir, C. N. Serhan and T. V. Hansen, *Chem. Eur.* J., 2014, 20, 14575.
- 6. J. Becher, Org. Synth., 1980, **59**, 79.
- 7. D. Soullez, G. Ple and L. Duhamel, J. Chem. Soc., Perkin Trans. 1, 1997, 1639.
- 8. M. Romero-Ortega, D. A. Colby and H. F. Olivo, *Tetrahedron Lett.*, 2002, **43**, 6439.
- 9. R. Tello-Aburto, A. Ochoa-Teran and H. F. Olivo, *Tetrahedron Lett.*, 2006, 47, 5915.