Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Supplementary information

Mechanistic Investigation of Anti-Elimination in (Z)-1,2-bis(arylseleno)-1-alkenes

and their Sulfur Analogs

Asami Tarao,^a Yukako Tabuchi,^a Eri Sugimoto,^a Hitomi Uchimoto,^a Kenji Arimitsu,^a Hiroyuki

Kimura,^b Ikuo Kawasaki,^a Masatoshi Kawahata,^c Kentaro Yamaguchi,^c Kiyoharu Nishide^a*

^a School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien Kyuban-cho, Nishinomiya, Hyogo 663-8179, Japan, E-mail: <u>nishide@mukogawa-u.ac.jp</u>, Phone & Fax: +81-798-45-9953

^b Radioisotope Research Center of Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan

^c Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan

Contents:

Procedure for synthesis of bis(4-trimethylsilylphenyl) selenide (S1)	2
Crystal data and structure refinement for compound 15	3
ORTEP Diagram of the compound 15	4
Copies of ¹ H, ¹³ C and ⁷⁷ Se NMR	5–31

Procedure for synthesis of bis(4-trimethylsilylphenyl)selenide (S1)

1-Bromo-4-trimethylsilylbenzene (195 μ L, 1.0 mmol) was added to a suspension of Mg (36 mg, 1.5 mmol) and trace amount of I₂ in anhydrous tetrahydrofuran (6 mL) at room temperature, and the mixture was stirred at the same temperature for 2.5 h. Then, diselenide **1** (225 mg, 0.5 mmol) was added to the reaction mixture and vigorously stirred for 3 h at 60 °C. The reaction was cooled and filtered through a celite pad. The filtrate was poured into cold a saturated aqueous solution of NH₄Cl (20 mL) and the mixture was extracted with EtOAc (20 mL×3). The organic layer was washed with brine (20 mL×2), dried over magnesium sulfate, and concentrated under vacuum. The residue was dissolved in ether (40 mL), treated with a solution of NaBH₄ (80 mg, 2.1 mmol) in methanol (2 mL), washed with 2N aqueous solution of KOH (20 mL). These treatment and washing were continued until the disappearance of the color of organic layer. The organic layer was dried over magnesium sulfate and concentrated under vacuum. The residue was purified by silica gel preparative thin layer chromatography (hexane) to give **S1** (146 mg, 77%).

¹H NMR (400 MHz, CDCl₃) δ : 0.25 (18H, s, Si-(CH₃)₃), 7.41 (4H, d, *J* = 8.1 Hz, Ar–H), 7.44 (4H, d, *J* = 8.1 Hz, Ar–H); ¹³C-NMR (100 MHz, CDCl₃) δ : –1.2, 131.9, 132.2, 134.2, 139.5; MS (EI) *m*/*z*: 378 (M⁺, 100), 363 (91), 214 (9), 73 (52); HR-MS (EI) *m*/*z*: 378.0740 (Calcd for C₁₈H₂₇SeSi₂: 378.0738); *Anal*: Found: C, 54.79; H, 6.40 (Calcd for C₁₈H₂₆OSeSi₂: C, 54.94; H, 6.66%).

Crystal data and structure refinement for compound 15

Empirical formula	$C_{26}H_{40}O_2S_2Si_2$		
Formula weight	504.88		
Temperature	100 K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P -1		
Unit cell dimensions	a = 11.205(3) Å	a= 108.312(3)°.	
	b = 11.346(3) Å	b= 90.218(3)°.	
	c = 13.093(4) Å	$g = 112.482(3)^{\circ}$	
Volume	1445.6(7) Å ³		
Z	2		
Density (calculated)	1.160 Mg/m ³		
Absorption coefficient	0.287 mm ⁻¹		
F(000)	544		
Crystal size	0.140 x 0.100 x 0.080 mm ³		
Theta range for data collection	1.655 to 26.811°.		
Index ranges	-13<=h<=14, -14<=k<=14, -16<=l<=16		
Reflections collected	14519		
Independent reflections	5515 [R(int) = 0.0315]		
Completeness to theta = 25.242°	98.9 %		
Absorption correction	None		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	5515 / 0 / 325		
Goodness-of-fit on F ²	1.033		
Final R indices [I>2sigma(I)]	R1 = 0.0411, wR2 = 0.0986		
R indices (all data)	R1 = 0.0554, wR2 = 0.1064		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.859 and -0.529 e.Å ⁻³		

ORTEP Diagram of the compound 15

conformer A

conformer B

¹H, ¹³C and ⁷⁷Se NMR of 3a

 $\mathbf{5}$

¹H and ¹³C NMR of 3b

¹H and ¹³C NMR of 3c

¹H, ¹³C and ⁷⁷Se NMR of 4a

¹H, ¹³C and ⁷⁷Se NMR of 5

¹H and ¹³C NMR of 4b

¹H and ¹³C NMR of 4c

¹H, ¹³C and ⁷⁷Se NMR of 6

¹H, ¹³C and ⁷⁷Se NMR of 7

¹H, ¹³C and ⁷⁷Se NMR of 8a

⁷⁷Se NMR of reaction mixture of 8a

¹H and ¹³C NMR of S1

¹H, ¹³C and ⁷⁷Se NMR of 9

¹H, ¹³C and ⁷⁷Se NMR of 10

¹H and ¹³C NMR of 14

¹H and ¹³C NMR of 15

¹H and ¹³C NMR of 15'

¹H and ¹³C NMR of 16

¹H and ¹³C NMR of 17

