Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Table of contents

General Methods	2
General procedure for organocatalytic reactions	3
Characterization of Michael addition products	4
Baclofen (compound 19) synthesis	9
Determination of the absolute configuration	10
General procedure for the synthesis of β -aryl- α -ketothioesters and of the corresponding β -nitro- α -aryl-esters	11
Characterization of β -aryl- α -ketothioesters and of the corresponding β -nitro- α -aryl-esters	12
2,2,2-trifluoroethyl 2-[(1,3-dithian)-2-yl]-ethanthioate (compound 8) preparation	15
Nitrostyrene derivatives preparation	16
Catalysts preparation	19
¹ H NMR, ¹³ C NMR and ¹⁹ F NMR spectra	23
HPLC chromatograms	68
References	74

General Methods

Dry solvents were purchased and stored under nitrogen over molecular sieves (bottles with crown caps). Reactions were monitored by analytical thin-layer chromatography (TLC) using silica gel 60 F₂₅₄ pre-coated glass plates (0.25 mm thickness) and visualized using UV light. Flash chromatography was carried out on silica gel (230-400 mesh). Proton NMR spectra were recorded on spectrometers operating at 300 MHz (Bruker Fourier 300 or AMX 300) or at 500 MHz (Bruker Advance 500). Proton chemical shifts are reported in ppm (δ) with the solvent reference relative to tetramethylsilane (TMS) employed as the internal standard (CDCl₃ $\delta = 7.26$ ppm). ¹³C NMR spectra were recorded on 300 MHz spectrometers (Bruker Fourier 300 or AMX 300) operating at 75 MHz, or on 500 MHz spectrometers (Bruker Advance 500) operating at 125 MHz, with complete proton decoupling. Carbon chemical shifts are reported in ppm (δ) relative to TMS with the respective solvent resonance as the internal standard (CDCl₃, $\delta = 77.0$ ppm). ¹⁹F NMR spectra were recorded on 300 MHz spectrometers (Bruker AMX 300) operating at 282 MHz. Fluorine chemical shifts are reported in ppm (δ) relative to CF₃Cl. Enantiomeric excess determinations were performed under below reported conditions with Agilent 1200 series HPLC. Mass spectra (MS) were performed at CIGA (Centro Interdipartimentale Grandi Apparecchiature), with mass spectrometer APEX II & Xmass software (Bruker Daltonics). Optical rotations were obtained on a polarimeter at 589 nm using 5 mL or 1 mL cell with a length of 1 dm.

General procedure for organocatalytic reactions

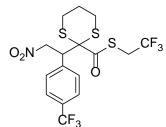
The proper nitrostyrene derivative (0.076 mmol), dithianilthioester (0.152 mmol) and the catalyst (0.0152 mmol, $0.2 \, \text{eq.}$) were dissolved in the proper dry solvent - typically, toluene - (1 mL). The reaction mixture was stirred at the desired temperature for 18 hours after which the solvent was removed at reduced pressure. Products were isolated by flash column chromatography on silica gel (9:1 hexane:ethyl acetate). The enantiomeric ratio was determined by HPLC on c hiral stationary phase, terms "major" and "minor" being referred respectively to the majority and the minority enantiomer obtained with quinine-derived catalysts, characterized by (S) configuration at C9, and with catalysts derived from (S,S)-diaminocyclohexane. The absolute configuration was determined through chemical correlation.

Characterization of Michael addition products

2,2,2-trifluoroethyl 4-nitro-3-phenyl-2-[(1,3-dithian)2-yl]-butanethioate (Table 1, compound 9)

Rf = 0.37 (7:3 hexane:ethyl acetate)

 1 H-NMR (300 MHz, CDCl₃) δ: 7.30 (s, 5H), 5.26 (AB system-part A, J = 13.7, 3.7 Hz, 1H), 5.08 (AB system-part B, J = 13.7, 10.9 Hz,1H), 4.17 (dd, J = 10.9, 3.6 Hz, 1H), 3.51-3.32 (m, 2H), 2.97-2.85 (m, 2H), 2.81-2.77 (m, 2H), δ 2.11-2.028 (m, 1H), 1.93-1.80 (m, 1H).


¹⁹F-NMR (300 MHz, CDCl₃) δ : -65.99 (t, J = 9.2 Hz).

 13 C-NMR (75 MHz, CDCl₃) δ : 195.99 (s), 132.29 (s), 129.58 (s), 128.59 (s), 127.97 (s), 124.20 (q, J = 274.6 Hz), 76.96 (s), 66.72 (s), 51.87 (s), 32.85 (q, J = 33.3 Hz), 28.04 (s), 27.54 (s), 22.53 (s).

The enantiomeric excess was determined by HPLC with Phenomenex Lux 3u C ellulose2 column; eluent: 95:5 Hexane/2-Propanol; flow rate: 0.8 mL/min; detection: 210 nm; t_R 8.33 min (major), t_R 9.05 min (minor).

HRMS Mass (ESI+) m/z calc. for $C_{19}H_{19}N_1O_3S_3F_3Na_1^+$: 428.04193, found: 428.04193 [M + Na].

2,2,2-trifluoroethyl 4-nitro-3-[4-(trifluoromethyl)phenyl]-2-[(1,3-dithian)-2-yl]-butanethioate (Table 4, compound 10)

Rf = 0.43 (7:3 hexane:ethyl acetate)

 1 H-NMR (300 MHz, CDCl₃) δ: 7.56 (AB system-part A, J = 8.2 Hz, 2H), 7.44 (AB system-part B, J = 8.2 Hz, 2H), 5.26 (AB system-part A, J = 14.0, 3.5 Hz, 1H), 5.05 (AB system-part B, J = 11.0, 3.7 Hz, 1H), 4.22 (dd, J = 11.0, 3.7 Hz, 1H), 3.54-3.35 (m, 2H), 2.99-2.87 (m, 2H), 2.84-2.77 (m, 2H), 2.12-2.04 (m, 1H), 1.95-1.79 (m, 1H).

¹⁹F-NMR (300 MHz, CDCl₃) δ: -63.35 (s), -66.11 (t, J = 9.7 Hz).

 13 C-NMR (75 MHz, CDCl₃) δ : 195.79 (s), 136.40 (s), 131.00 (s), 129.57 (s), 124.93 (s), 124.04 (q, J = 273.5 Hz), 123.33(q, J = 289.11), 121.40 (s), 76.46 (s), 66.25 (s), 51.45 (s), 32.81 (q, J = 33.6 Hz), 27.96 (s), 27.53 (s), 22.40 (s).

The enantiomeric excess was determined by HPLC on chiral stationary phase with Phenomenex Lux Cellulose2; eluent 9:1 Hexane/2-Propanol; flow 0.8 mL/min; detection: 210 nm; t_R : 9.02 min (major), t_R : 10.52 min (minor).

 $[\alpha]_D^{23}$ =+ 5. 105 (c 0.174, CHCl₃, e.e. 53%).

HRMS Mass (ESI+) m/z calc. for $C_{16}H_{15}N_1O_3S_3F_6Na_1^+$: 502.00105, found: 502.00189 [M + Na].

2,2,2-trifluoroethyl 4-nitro-3-[4-(chloro)phenyl]-2-[(1,3-dithian)-2-yl]-butanethioate (Table 4, compound 11)

Rf = 0.47 (7:3 hexane:ethyl acetate)

¹H-NMR (300 MHz, CDCl₃) δ : 7.28 (m, 4H), 5.23 (AB system-part A, J = 13.8, 3.6 Hz, 1H), 5.02 (AB system-part B, J = 13.8, 11.1 Hz, 1H), 4.15 (dd, J = 11.0, 3.5 Hz, 1H), 3.57-3.41 (m, 2H), 3.05-2.88 (m, 2H), 2.86-2.78 (m, 2H), 2.14-2.06 (m, 1H), 1.96-1.81 (m, 1H).

¹⁹F-NMR (300 MHz, CDCl₃) δ: -66.06 (t).

¹³C-NMR (75 MHz, CDCl₃) δ : 196.39 (s), 135.25 (s), 131.31 (s), 130.91 (s), 128.76 (s), 124.65 (q, J = 274.5 Hz), 77.22 (s), 66.97 (s), 51.72 (s), 33.41 (q, j = 33.8 Hz), 28.53 (s), 28.04 (s), 22.98 (s).

The enantiomeric excess was determined by HPLC on chiral stationary phase with Phenomenex Lux Cellulose2; eluent 9:1 Hexane/2-Propanol; flow 0.8 mL/min; detection: 210 nm; t_R : 11.27 min (major), t_R : 12.60 min (minor).

 $[\alpha]_D^{23}$ = + 8.726 (*c* 0.324, CHCl₃, e.e. 69%).

HRMS Mass (ESI+) m/z calc. for $C_{15}H_{15}N_1O_3S_3F_3Na_1^+$: 467.97, found: 467.97582 [M + Na].

2,2,2-trifluoroethyl 4-nitro-3-[4-(methyl)phenyl]-2-[(1,3-dithian)-2-yl]-butanethioate (Table 4, compound 12)

Rf = 0.42 (7:3 hexane:ethyl acetate)

 1 H-NMR (300 MHz, CDCl₃) δ: 7.17 (AB system-part A, J = 8.0 Hz, 2H), 7.09 (AB system-part B, J = 8.1 Hz, 2H), 5.20 (AB system-part A, J = 13.6, 3.7 Hz, 1H), 5.03 (AB system-part B, J = 13.5, 10.9 Hz, 1H), 4.12 (dd, J = 10.9, 3.6 Hz, 1H), 3.51-3.38 (m, 2H), 2.97-2.85 (m, 2H), 2.82-2.79 (m, 2H), 2.30 (s, 3H), 2.01-2.08 (m, 1H), 1.93-1.82 (m, 1H).

¹⁹F-NMR (300 MHz, CDCl₃) δ : -65.98 (t, J = 8.8 Hz).

 13 C-NMR (75 MHz, CDCl₃) δ : 196.49 (s), 139.02 (s), 129.61 (s), 129.38 (s), 129.23 (s), 124.73 (q, J = 274.6 Hz), 76.75 (s), 67.40 (s), 52.04 (s), 33.49 (q, J = 33.7 Hz), 28.60 (s), 28.07 (s), 23.11 (s), 21.12 (s).

The enantiomeric excess was determined by HPLC on chiral stationary phase with Phenomenex Lux Cellulose2; eluent 9:1 Hexane/2-Propanol; flow 0.8 mL/min; detection: 210 nm; t_R : 9.24 min (major), t_R : 10.42 min (minor).

 $[\alpha]_D^{23}$ = + 5.566 (c 0.1796, CHCl₃, e.e. 73%).

HRMS Mass (ESI+) m/z calc. for $C_{16}H_{18}N_1O_3S_3F_3Na_1^+$ 448.02931, found: 448.03026 [M + Na].

2,2,2-trifluoroethyl 4-nitro-3-[2-(methyl)phenyl]-2-[(1,3-dithian)-2-yl]-butanethioate (Table 4, compound 13)

$$O_2N$$
 S S CF_3 Me

Rf = 0.39 (7:3 hexane:ethyl acetate)

 1 H-NMR (300 MHz, CDCl₃) δ: 7.48-7.45 (m, 1H), 7.23-7.16 (m, 3H), 5.11 (AB system-part A, J = 13.5, 3.5 Hz, 1H), 4.97 (AB system-part B, J = 12.2 Hz, 1H), 4.59 (dd, J = 10.8, 3.2 Hz, 1H), 3.63-3.40 (m, 2H), 3.03-2.88 (m, 2H), 2.83-2.76 (m, 2H), 2.46 (s, 3H), δ 2.11-2.06 (m, 1H), 1.97-1.84 (m, 1H).

¹⁹F-NMR (300 MHz, CDCl₃) δ: -66.25 (t, J = 9.0 Hz).

 13 C-NMR (75 MHz, CDCl₃) δ: 197.34 (s), 138.62 (s), 131.90 (s), 131.04 (s), 128.79 (s), 126.52 (s), 126.18 (s), 124.69 (q, J = 274.5 Hz), 77.26 (s), 67.77 (s), 46.44 (s), 33.64 (q, J = 33.0 Hz), δ 28.46 (s), 23.02 (s), 20.14 (s).

The enantiomeric excess was determined by HPLC on chiral stationary phase with Phenomenex Lux Cellulose2; eluent 9:1 Hexane/2-Propanol; flow 0.8 mL/min; detection: 210 nm; t_R: 8.89 min (major), t_R: 10.20 min (minor)

 $[\alpha]_D^{23}$ = - 9.793 (c 0.22, CHCl₃, e.e. 67%).

HRMS Mass (ESI+) m/z calc. for $C_{16}H_{18}N_1O_3S_3F_3Na_1^+$ 448.02931, found: 448.03034 [M + Na].

$2,2,2-trifluoroethyl \ 4-nitro-3-[4-(methoxy)phenyl]-2-[(1,3-dithian)-2-yl]-butanethioate \ (Table\ 4, compound\ 14)$

Rf = 0.31 (7:3 hexane:ethyl acetate)

 1 H-NMR (300 MHz, CDCl₃) δ: 7.21 (AB system-part A, J = 8.0 Hz, 2H), 6.80 (AB system-part B, J = 8.1 Hz, 2H), 5.18 (AB system-part A, J = 13.1 Hz, 1H), 5.00 (AB system-part B, J = 12.1 Hz, 1H), 4.09 (d, J = 10.8 Hz, 1H), 3.76 (s, 3H), 3.50-3.38 (m, 2H), 2.96-2.86 (m, 2H), 2.80-2.76 (m, 2H), 2.09-2.04 (m, 1H), 1.92-1.80 (m, 1H).

¹⁹F-NMR (300 MHz, CDCl₃) δ : -65.98 (t, J = 9.6 Hz).

 13 C-NMR (75 MHz, CDCl₃) δ: 195.55 (s), 160.04 (s), 130.71 (s), 124.49 (s), 124.73 (q, J = 274.4 Hz), 113.88 (s), 76.86 (s), 67.45 (s), 55.17 (s), 51.77 (s), 33.43 (q, J = 33.5 Hz), 28.59 (s), 28.07 (s), 23.11 (s).

The enantiomeric excess was determined by HPLC on chiral stationary phase with Phenomenex Lux Cellulose2; eluent 9:1 Hexane/2-Propanol; flow 0.8 mL/min; detection: 210 nm; t_R : 13.69 min (major), t_R : 15.78 min (minor).

 $[\alpha]_D^{23}$ = + 3.062 (*c* 0.288, CHCl₃, e.e. 73%). HRMS Mass (ESI+) m/z calc. for C₁₆H₁₈N₁O₄S₃F₃Na₁⁺ 464.02423, found: 464.02536 [M + Na].

2,2,2-trifluoroethyl 4-nitro-3-[2-(methoxy)phenyl]-2-[(1,3-dithian)-2-yl]-butanethioate (Table 4, compound 15)

Rf = 0.41 (7:3 hexane:ethyl acetate)

 1 H-NMR (300 MHz, CDCl₃) δ: 7.37-7.34 (m, 1H), 7.29 (d, J = 7.4 Hz, 1H), 6.95 (t, J = 7.5 Hz, 1H), 6.87 (d, J = 8.2 Hz, 1H), 5.21 (AB system-part A, J = 13.4, 3.9 Hz, 1H), 5.10 (AB system-part B, 1H), 4.80-4.78 (m, 1H), 3.81 (s, 3H), 3.47 (q, J = 10.0 Hz, 2H), 3.00-2.77 (m, 4H), 2.09-2.03 (m, 1H), 1.92-1.83 (m, 1H).

¹⁹F-NMR (300 MHz, CDCl₃) δ: -66.09 (t, J = 8.8 Hz).

 13 C-NMR (75 MHz, CDCl₃) δ : 196.55 (s), 157.95 (s), 130.20 (s), 124.79 (q, J = 274.6 Hz), 121.75 (s), 120.47 (s), 111.27 (s), 76.33 (s), 67.84 (s), 55.53 (s), 33.60 (q, J = 33.0 Hz), 28.75 (s), 28.11 (s), 23.12 (s).

The enantiomeric excess was determined by HPLC with Daicel Chiralpack AS-3 column; eluent: 9:1 Hex/2-Propanol; flow 0.8 mL/min; detection: 210 nm; t_R : 30.78 min (minor), t_R : 34.22 min (major)

 $[\alpha]_D^{23}$ = - 11.80 (c 0.122, CHCl₃, e.e. 71%).

HRMS Mass (ESI+) m/z calc. for $C_{16}H_{18}N_{104}S_3F_3Na_1^+$: 464.02423, found: 464.02526 [M + Na].

2,2,2-trifluoroethyl 4-nitro-3-[2-(acetoxy)phenyl]-2-[(1,3-dithian)-2-yl]-butanethioate (Table 4, compound 16)

$$O_2N$$
 S
 S
 S
 CF_3

Rf = 0.31 (7:3 hexane:ethyl acetate)

1H-NMR (300 MHz, CDCl₃) δ : 7.57 (dd, J = 7.7, 1.1 Hz, 1H), 7.34 (td, J = 7.8, 1.6 Hz 1H), 7.24-7.22 (m, 1H), 7.16 (d, J = 8.1 Hz, 1H), 5.15 (AB system-part A, J = 13.8, 3.8 Hz, 1H), 4.94 (AB system-part B, J = 13.8, 10.3 Hz, 1H), 4.71 (dd, J = 10.1, 3.8 Hz, 1H), 3.37-3.31 (m, 2H), 2.97-2.87 (m, 2H), 2.81-2.73 (m, 2H), 2.38 (s, 3H), 2.09-2.01 (m, 1H), 1.93-1.81 (m, 1H).

¹⁹F-NMR (300 MHz, CDCl₃) δ: -66.30 (t).

¹³C-NMR (75 MHz, CDCl₃) δ: 196.69, 170.17, 151.34, 131.33, 129.49, 128.12, 127.50, 126.16, 120.3 6, 76.74, 67.24, 51.60, 32.57 (q), 28.75, 28.11, 23.12, 20.89.

The enantiomeric excess was determined by HPLC on chiral stationary phase with Phenomenex Lux Cellulose2; eluent 9:1 Hexane/2-Propanol; flow 0.8 mL/min; detection: 210 nm; t_R: 18.55 min (minor), t_R: 21.15 min (major)

 $[\alpha]_D^{23}$ = - 14.82 (c 0.244, CHCl₃, e.e. 85%).

(E)-2,2,2-trifluoroethyl 3-nitromethyl-2-[(1,3-dithian)-2-yl]-5-phenyl-pent-4-en-thioate (compound 17)

$$O_2N$$
 S
 S
 CF_3

Rf = 0.31 (7:3 hexane:ethyl acetate)

 1 H-NMR (300 MHz, CDCl₃) δ: 7.34-7.28 (m, 5H), 6.55 (d, J = 15.6 Hz, 1H), 6.09 (dd, J = 15.6, 9.8 Hz, 1H), 4.98 (AB system-part A, J = 12.8 Hz, 1H), 4.63 (AB system-part B, J = 11.8 Hz, 1H), 3.73-3.55 (m, 3H), 3.02-2.92 (m, 2H), 2.85-2.81 (m, 2H), 2.13-2.10 (m, 1H), 1.95-1.86 (m, 1H).

¹⁹F-NMR (300 MHz, CDCl₃) δ: -66.31 (t, J = 9.1 Hz).

 13 C-NMR (75 MHz, CDCl₃) δ: 195.59 (s), 137.05 (s), 135.08 (s), 128.05 (s), 127.94 (s), 126.33 (s), 124.18 (q, J = 274.4 Hz), 119.93 (s), 76.05 (s), 66.19 (s), 50.05 (s), 32.77 (q, J = 33.6 Hz), 27.82 (s), 27.52 (s), 22.88 (s).

The enantiomeric excess was determined by HPLC on chiral stationary phase with Phenomenex Lux Cellulose2; eluent 9:1 Hexane/2-Propanol; flow 0.8 mL/min; detection: 210 nm; t_R : 9.52 min (major), t_R : 11.45 min (minor).

 $[\alpha]_D^{23}$ = + 50.55 (c 0.182, CHCl₃, e.e. 71%).

HRMS Mass (ESI+) m/z calc. for $C_{17}H_{18}N_1O_3S_3$ $F_3Na_1^+$: 460.02931, found: 460.03053.

Baclofen (compound 19) synthesis

Compound 11 (1.34 mmol) was dissolved in ethanol and 53.8 mL) and ethyl acetate (40 mL); the solution was cooled to 0 °C and stirred for 10 minutes, after which 6M HCl (11.6 mL) was added. The solution was vigorously stirred while powder zinc (66.8 mmol) was added in three portions over 10 min. The reaction mixture was stirred at room temperature for 2 hours; after this period powder zinc (33.4 mmol) was added in one portion and the resultant grey suspension was stirred at room temperature for a further 1 hour. The organic solvent was removed under vacuum and the aqueous solution was quenched with an oversaturated solution of NaHCO₃. The aqueous layer was washed five times with ethyl acetate. The combined organic phases were dried over anhydrous Na₂SO₄ and the solvent was removed under reduced pressure. Purification through flash column chromatography on silica gel (98:2 CH₂Cl₂:MeOH) afforded the desired product 18 as a white solid (0.926 mmol, 69% yield).

The reaction was performed also on 5 mmols scale of starting material.

 $Rf = 0.38 (94:6 CH_2Cl_2:MeOH)$

¹H-NMR (300 MHz, CDCl₃):δ: 7.34 (AB system-part A, J = 8.3 Hz, 2H), 7.17 (AB system-part B, J = 8.2 Hz, 2H), 3.74 (t, 1H), 3.65 (m, 1H), 3.38 (t, 1H), 2.75 (AB system-part A, 1H), 2.43 (AB system-part B, 1H).

¹⁹F-NMR (300 MHz, CDCl₃): no signal

¹³C-NMR (75 MHz, CDCl₃) δ: 177.90, 140.69, 129.24, 128.98, 128.12, 49.55, 39.59, 38.01.

 $[\alpha]_D^{23}$ = + 18.35 (c 0.306, CHCl₃).

MS Mass (ESI+) m/z calc. for $C_{10}H_{10}Cl_1N_1O_1Na_1^+$ 218.23, experimental 218.10.

A solution of product **18** (1.34 mmol) in 6M HCl (3.3 mL) was refluxed for 18 hours. After this period the solvent was removed under reduced pressure and baclofen hydrochloridric salt **19** was isolated as a white solid (0.48 mmol, 73% yield).

¹H-NMR (300 MHz, CD₃OD) δ: 7.35 (m, 4H), 3.32 (m, 2H), 3.18 (m, 1H), 2.80 (AB system-part A, 1H), 2.67 (AB system-part B, 1H).

¹³C-NMR (75 MHz, CD₃OD) δ: 173.95, 138.63, 134.25,δ 130.20, 129.80,44.36,40.57, 38.74.

HMRS Mass (FAB +) m/z calc. for: $C_{10}H_{13}Cl_2N0_2^+$: 214.06, found: 214.0637.

Determination of the absolute configuration

The sense of enantioselection the stereoselective organocatalyzed conjugate addition reaction was determined through chemical correlation.

2,2,2-trifluoroethyl 4-nitro-3-[4-(chloro)phenyl]-2-[(1,3-dithian)-2-yl]-butanethioate (compound **11**), obtained with quinine-derived catalyst A, was transformed into the known compound **18** (direct precursor of baclofen, compound **19**) through one-pot nitro group reduction and lactonization and simultaneous loss of the dithiane moiety.

Optical rotation of the product was measured ($[\alpha]_D^{23}$ = +18.35, c 0.306, CHCl₃) and compared with literature data ($[\alpha]_D^{23}$ = +21.8, c 0.5, CH₂Cl₂).¹

Compound 18 - and, as a consequence, compound 11 - was assigned (S)-configuration.

General procedure for the synthesis of β -aryl- α -ketothioesters and of the corresponding β -nitro- α -aryl-esters

Step 1²

$$O_2N$$
 S
 S
 CF_3
 NBS
 O_2N
 Ar
 O
 S
 CF_3

To a stirred solution of *N*-bromosucinimide (10 eq.) in aqueous 97% acetone (1.85 mL for 1 mmol of NBS) at 0 ° C a solution of the proper 2,2,2-trifluoroethyl 4-nitro-3-aryl-2-[(1,3-dithian)2-yl]-butanethioate (1 eq.) in acetone (4 mL for 1 mmol of carboxythioester) was added dropwise. The solution turned yellow to limpid orange and after some minutes faded to pale yellow. The reaction mixture was allowed to warm to room temperature and stirred for 4 hours. After this period, the reaction mixture was treated with an oversatured aqueous solution of Na₂SO₃ and extracted with ethyl acetate. The combined organic phases were dried over anhydrous Na₂SO₄ and the solvent was removed under reduced pressure. Products were used in the subsequent step without further purification.

Step 2³

$$O_2N$$
 O_2N
 O_3
 O_4
 O_5
 O_7
 O_7
 O_7
 O_7
 O_7
 O_8
 O_7
 O_8
 $O_$

To a stirred solution in dry methanol (0.1 mL for 0.057 m mol of substrate), of the β -nitro- α -ketothioester (1 eq.), obtained in the previous step, CF_3CO_2Ag (1.2 eq.) and triethylamine (1 eq.) were added at room temperature. A yellow precipitate was formed. After ten minutes, water was added and the crude reaction product was extracted three times with ethyl acetate The combined organic phases were dried over anhydrous Na_2SO_4 and the solvent was removed under reduced pressure.

Characterization of β -aryl- α -ketothioesters and of the corresponding β -nitro- α -arylesters

2,2,2-trifluoroethyl 4-nitro-3-phenyl-2-oxo-butanethioate (compound 20)

$$O_2N$$
 O_2N
 O_2N
 O_3
 O_3

Rf = 0.53 (8:2 hexane:ethyl acetate))

¹H NMR (300 MHz, CDCl₃) δ : 7.42-7.39 (m, 3H), 7.27-7.24 (m, 2H), 5.36 (dd, J = 10.3, 4.4 Hz, 1H), 5.23 (dd, J = 14.8, 10.3 Hz, 1H), 4.68 (dd, J = 14.8, 4.4 Hz, 1H), 3.60 (q, J = 9.6 Hz, 2H).

 13 C NMR (75 MHz, CDCl₃) δ: 188.71 (s), 186.04 (s), 133.00 (s), 129.33 (s), 128.90 (s), 128.33 (s), 127.61 (s), 127.40 (q, J = 274.9 Hz), 73.97 (s), 48.10 (s), 30.04 (q, J = 34.5 Hz).

¹⁹F NMR (282 MHz, CDCl₃) δ: -66.45 (t, J = 9.6 Hz).

$$[\alpha]_D^{23}$$
 = + 7.55, c 0.1, CHCl₃

Methyl 3-nitro-2-phenylpropanoate (compound 23)⁴

¹H NMR (300 MHz, CDCl₃) δ : 7.40-7.36 (m, 3H), 7.30-7.27 (m, 2H), 5.13 (dd, J = 14.5, 9.8 Hz, 1H), 4.57 (dd, J = 14.5, 5.2 Hz, 1H), 4.47 (dd, J = 9.8, 5.2 Hz, 1H), 3.76 (s, 3H).

The enantiomeric excess was determined by HPLC on chiral stationary phase with Daicel Chiralcell OD-H column, eluent 95:5 Hexane/2-Propanol; flow 1 mL/min; detection: 210 nm; t_R: 23.00 min (major), t_R: 59.40 min (minor).

$$[\alpha]_D^{23}$$
 = -141.45, c 0.300, CHCl₃ (in lit., ref. 4, $[\alpha]_D^{23}$ = -134.9 (c 1.8, CHCl₃, 82% ee).

Alternative HPLC analysis conditions: column: Phenomenex Lux Cellulose2; eluent 8:2 Hexane/2-Propanol; flow 0.8 mL/min; detection: 210 nm; t_R: 9.07 min (minor), t_R: 11.41 min (major).

2,2,2-trifluoroethyl 4-nitro-3-[4-(trifluoromethyl)phenyl]-2-oxo-butanethioate (compound 21)

$$O_2N$$
 O_2N
 O_2N

Rf = 0.60 (8:2 hexane:ethyl acetate)

¹H NMR (300 MHz, CDCl₃) δ : 7.68 (AB system-part A, J = 8.2 Hz, 2H), 7.42 (AB system-part B, J = 8.2 Hz, 2H), 5.44 (dd, J = 10.0, 4.8 Hz, 1H), 5.24 (dd, J = 15.0, 10.0 Hz, 1H), 4.75-4.67 (m, 1H), 3.61 (q, J = 9.6 Hz, 2H).

 13 C NMR (75 MHz, CDCl₃) δ: 188.88 (s), 186.46 (s), 135.36 (s), 133.81 (s), 129.32 (s), 130.20 (q, J = 16.3), 129.127.88 (q, J = 276.80 Hz), 127.56 (q, J = 284.8 Hz), 126.83 (s), 74.27 (s), 48.32 (s), 30.64 (q, J = 34.8 Hz).

 $[\alpha]_D^{23}$ = + 8.06, c 0.15, CHCl₃

Methyl 3-nitro-2-[4-(trifluoromethyl)-phenyl]-propanoate (compound 24)

$$O_2N$$
 OMe CF_3

¹H NMR (300 MHz, CDCl₃) δ: 7.67 (AB system-part A, J = 8.1 Hz, 2H), 7.44 (AB system-part B, J = 8.0 Hz, 2H), 5.14 (dd, J = 14.2, 8.9 Hz, 1H), 4.61 (dd, J = 19.3, 5.1 Hz, 1H), 4.60-4.52 (m, 2H).

¹³C NMR (75 MHz, CDCl₃) δ: 170.24 (s), 136.99 (s), 128.46 (s), 126.41 (s), 125.83 (s), 75.36 (s), 52.97 (s), 48.41(s).

¹⁹F NMR (282 MHz, CDCl₃) δ: -76.20 (s).

 $[\alpha]_D^{23}$ = - 131,5, c 0.1, CHCl₃

2,2,2-trifluoroethyl 4-nitro-3-[4-(chloro)phenyl]-2-oxo-butanethioate (compound 22)

$$O_2N$$
 O_2N
 O_2N
 O_3
 O_4
 O_5
 O_5
 O_5
 O_5
 O_5

Rf = 0.63 (8:2 hexane:ethyl acetate)

¹H NMR (300 MHz, CDCl₃) δ 7.36 (d, J = 8.5 Hz, 2H), 7.18 (d, J = 8.5 Hz, 2H), 5.31 (dd, J = 10.0, 4.7 Hz, 1H), 5.16 (dd, J = 14.8, 10.0 Hz, 1H), 4.64 (dd, J = 14.9, 4.8 Hz, 1H).

 13 C NMR (75 MHz, CDCl₃) δ: 188.41 (s), 185.98 (s), 135.26 (s), 133.61 (s), 129.60 (s), 73.79 (s), 47.39 (s), 30.06 (q, J = 34.6 Hz).

¹⁹F NMR (282 MHz, CDCl₃) δ: -66.44 (t, J = 9.6 Hz).

 $[\alpha]_D^{23}$ = +5.70, c 0.15, CHCl₃

Methyl 3-nitro-2-[4-(chloro)phenyl]-propanoate (compound 25)

 1 H NMR (300 MHz, CDCl₃) δ: 7.37 (AB system-part A, J = 8.5 Hz, 1H), 7.23 (AB system-part B, J = 8.5 Hz, 1H), 5.09 (dd, J = 14.6, 9.5 Hz, 1H), 4.56 (dd, J = 14.6, 5.5 Hz, 1H), 4.44 (dd, J = 9.5, 5.6 Hz, 1H).

¹³C NMR (75 MHz, CDCl₃) δ: 170.69 (s), 135.33 (s), 131.59 (s), 129.61 (s), 129.29 (s), 75.33 (s), 53.02 (s), 48.00 (s).

 $[\alpha]_D^{23}$ = - 137.05, c 0.15, CHCl₃

The enantiomeric excess was determined by HPLC on chiral stationary phase with Phenomenex Lux Cellulose2; eluent 8:2 Hexane/2-Propanol; flow 0.8 mL/min; detection: 210 nm; t_R: 9.81 min (minor), t_R: 13.69 min (major).

2,2,2-trifluoroethyl 2-[(1,3-dithian)-2-yl]-ethanthioate (compound 8) preparation

A solution of ethyl 2-[(1,3-dithian)-2-yl]-acetate (1.92 g, 10 mmol) in a 1:1 mixture of 1N KOH (10 mL) and *tert*-butanol (10 mL) was stirred overnight at room temperature. The alcohol was removed under reduced pressure and the aqueous phase was acidified with 2N HCl. The mixture was extracted with ethyl acetate (4 x 50 mL) and the solvent was removed under reduced pressure to give 1.5 g of solid dithiane carboxylic acid (mp 115-116°C). The ¹H NMR spectra was in agreement with that reported in the literature.

$$\begin{array}{c} \text{S} \\ \text{S} \\ \text{H} \end{array} \begin{array}{c} \text{1. OHBt, } \text{CH}_2\text{Cl}_2, 0 \ ^\circ\text{C} \\ \text{2. EDC} \ , \text{HCl, } \text{CH}_2\text{Cl}_2, 0 \ ^\circ\text{C} \\ \hline \\ \text{3. CF}_3\text{CH}_2\text{SH, } \text{CH}_2\text{Cl}_2, \\ 0 \ ^\circ\text{C to RT} \end{array} \begin{array}{c} \text{S} \\ \text{S} \\ \text{S} \\ \text{y>99\%} \end{array}$$

To a solution of carboxylic acid (821 mg, 5 mmol) in dry CH_2Cl_2 (25 mL) HOBt (709 mg, 5.25 mmol) was added at 0 °C, and the resulting solution was stirred for 10 minutes at the same temperature. After this period, EDC•HCl (1.01 g, 5.25 mmol) was added at 0 °C and the mixture was stirred for 30 minutes at the same temperature. Finally, 2,2,2-trifluoroethanethiol (638 mg, 5.50 mmol) was added at 0 °C, and the mixture was allowed to warm to room temperature. After being stirred overnight, the reaction mixture was diluted with CH_2Cl_2 (10 mL) and H_2O (30 mL) was added. The aqueous layer was extracted with CH_2Cl_2 (2 × 15 mL) and the combined organic phases were washed with water (2 × 10 mL) and brine (10 mL) and dried over MgSO₄. The solvent was removed under reduced pressure and the desired compound was obtained as a white solid (1.25 g, 95%).

Mp: 56-57 °C.

¹H-NMR (300 MHz, CDCl₃) δ : 3.62 (q, J = 9.8 Hz, 2H), 3.16-3.24 (m, 2H), 2.60-2.68 (m, 2H), 1.96-2.20 (m, 2H).

 13 C-NMR (75 MHz, CDCl₃) δ : 192.7 (s), 124.0 (q, J = 272.0 Hz), 49.5 (s), 31.8 (q, J = 1.4 Hz), 26.4 (s), 24.7 (s).

¹⁹F-NMR (282 MHz, CDCl₃) δ: -67.2 (t).

v (cm⁻¹) (KBr) 2998, 2970, 2934, 2907, 1698, 1686, 1400, 1307, 1270, 1237, 1131, 1081, 1009, 992, 910, 764.

C₇H₉F₃OS₃ (262.34): calc. C, 32.05, H, 3.46; found C, 32.14, H, 3.47.

Nitrostyrene derivatives preparation

Compounds 1-15 synthesis

A stirred mixture of the proper aldehyde (1 eq.), ammonium acetate (0.3 eq.) and nitromethane (55 eq.) was subjected to 200W microwave irradiation and heated to 90 °C for 1 hour. Constant microwave irradiation and simultaneous air-cooling (2 bar) were applied during the entire reaction time. After this period, the mixture was treated with an oversaturated aqueous solution of NaHCO₃ and extracted with CH₂Cl₂. The combined organic phases were dried over anhydrous Na₂SO₄ and the solvent was removed under reduced pressure. This procedure typically brought to the formation of a mixture of the desired nitrostyrene derivative and of the nitroalcohol; the two products were separated through flash column chromatography on silica gel (9:1 hexane:ethyl acetate) and nitroalcohols were subjected to subsequent dehydration.

The proper nitroalcohol was dissolved in CH_2Cl_2 ; the solution was cooled to 0 °C and stirred for 10 minutes. After this period, triethylamine (4 eq.) and methanesulfonyl chloride (3 eq.) were added dropwise. The resulting mixture was stirred at room temperature for 14 hours, after which the reaction mixture was quenched with water; the aqueous layer was separated and washed three times with CH_2Cl_2 . The combined organic phases were dried over anhydrous Na_2SO_4 and the solvent was removed under reduced pressure. The crude was purified by flash column chromatography on silica gel (9:1 hexane:ethyl acetate).

Products' analytical data were in agreement with literature.

Compound	R	Yield (%)
10	p- CF ₃	51
11	p- Cl	52
12	<i>p</i> - CH ₃	53
13	<i>o</i> - СН ₃	79
14	<i>p</i> - OMe	37
15	o- OMe	>99

Compound 16 synthesis

A stirred mixture of the salicylic aldehyde (1 eq.), ammonium acetate (1.1 eq.) and nitromethane (100 eq.) was refluxed for 14 hours. After this period, nitromethane was removed under reduced pressure and the mixture was treated with H₂O and extracted with CH₂Cl₂. The combined organic phases were dried over anhydrous Na₂SO₄ and the solvent was removed under reduced pressure. After purification through flash column chromatography on silica gel (9:1 hexane:ethyl acetate) the desired nitrostyrene derivative (*E*)-2-(2-nitrovinyl)phenol was obtained as yellow solid (46% yield).

$$\begin{array}{c|c} & O \\ & + \\ & CI \end{array} \xrightarrow{\begin{array}{c} Et_3N, \ DMAP \\ \hline CH_2Cl_2, \ RT, \ 2h \end{array}} \begin{array}{c} NO_2 \\ \\ OAc \end{array}$$

To a stirred solution of the previously prepared nitrostyrene derivative (E)-2-(2-nitrovinyl)phenol (1 eq.) 4-dimethylaminopyridine (0.1 eq.), triethylamine (2 eq.) and acetyl chloride (1.5 eq.) were added dropwise at 0 °C. The mixture was stirred for 2 hours and after this period it was quenched with an oversaturated solution of NaHCO₃; the aqueous layer was separated and washed diethyl ether. The combined organic phases were dried over anhydrous Na₂SO₄ and the solvent was removed under reduced pressure. Purification though flash column chromatography on silica gel (9:1 hexane:ethyl acetate) afforded compound **16** as a yellow solid (36% yield).

Compound 17 synthesis⁵

A solution of lithium aluminium hydride (0.179 mmol) in dry tetrahydrofuran (7 mL) was cooled to 0 °C and stirred for 30 minutes. After this period, nitromethane (0.485 mL) was added and the reaction mixture was stirred at 0 °C for 30 minutes. Cinnamaldehyde (1.79 mmol) was added dropwise and the reaction mixture was stiredr at 0 °C for 14 hours, after which the reaction mixture was quenched with 1M HCl; the aqueous layer was separated and extracted with CH₂Cl₂. The combined organic phases were dried over anhydrous Na₂SO₄ and the solvent was removed under reduced pressure. The product was purified by flash column chromatography on silica gel (9:1 hexane:ethyl acetate). The desired nitroalcohol was obtained as a yellow oil (1.29 mmol, 72% yield).

$$\frac{\mathsf{OH}}{\mathsf{NO}_2} \xrightarrow{\mathsf{(CF}_3CO)_2O, \ \mathsf{Et}_3\mathsf{N}} \mathsf{NO}_2$$

Nitroalcohol (1.29 mmol) was dissolved under inert atmosphere in CH₂Cl₂; the solution was cooled to 0 °C and stirred for 10 minutes. After this period, 2,2,2-trifluoroacetic anhydride (1.37 mmol) and triethylamine (2.73 mmol) were added. The reaction mixture was stirred under inert atmosphere at room temperature for 2 hours, after which it was treated with an oversaturated aqueous solution of NH₄Cl and extracted with CH₂Cl₂. The combined organic phases were washed with an oversaturated solution of NaCl and dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure. The crude was purified by flash column chromatography on silica gel (9:1 hexane:ethyl acetate). Nitrostyrene derivative **17** was isolated as a yellow solid.

Product's analytical data were in agreement with literature.

Catalysts preparation

Synthesis of thiourea-based bifunctional catalysts derived from Cinchona alkaloids

Products were prepared according to literature procedures; analytical data were in agreement with literature ones.

Catalyst G⁶

 $Rf = 0.33 (CH_2Cl_2/MeOH = 95/5 + 1mL NH_4OH)$

 1 H-NMR (300 MHz, CD₃OD) δ: 8.56 (d, J = 4.6 Hz, 1H), 7.87 (d, J = 8.8 Hz, 1H), 7.58 (d, J = 4.6 Hz, 1H), 7.32-7.27 (m, 2H), δ 5.76-5.65 (m, 1H), 5.51 (d, J = 3.3 Hz, 1H), 4.95-4.84 (m, 2H), 3.71-3.62 (m, 1H), 3.10-3.02 (m, 1H), 2.73-2.60 (m, 2H), 2.37-2.23 (bs, 1H), δ 1.88-1.75 (m, 3H), 1.77 (br s, 1H), 1.59-1.51 (m, 1H), 1.45-1.36 (m, 1H).

Catalyst H⁷

 $Rf = 0.41 (EtOAc/MeOH = 50/50 + 1mL NH_4OH)$

 1 H-NMR (300 MHz, CDCl₃) δ : 8.69 (d, J = 4.4 Hz, 1H), 7.97 (d, J = 9.2 Hz, 1H), 7.65 (bs, 1H), 7.40 (d, J = 4.4 Hz, 1H), 7.32 (dd, J = 9.2, 2.4 Hz, 1H), 5.80-5.7 (m, 1H), δ 4.97-4.89 (dd, J = 13.6, 9.9 Hz, 2H), 4.53 (d, J = 10.1 Hz, 1H), 3.90 (s, 3H), 3.26-3.16 (m, 2H), 2.98-3.07 (m, 1H), δ 2.79-2.69 (m, 2H), 2.22 (br s, 1H), 2.03 (bs, 2H), 1.56-1.50 (m, 3H), 1.36-1.43 (m, 1H), 0.80-0.68 (m, 1H).

Catalyst I⁸

 $Rf = 0.22 (CH_2Cl_2/MeOH = 50/50 + 1mL NH_4OH)$

¹H-NMR (300 MHz, CDCl₃): δ 8.59-8.56 (m, 1H), 7.95 (dd, J = 9.1, 1.9 Hz, 1H), 7.53 (bs, 1H), 7.31-7.25 (m, 2H), 7.29 (dd, 1H), 5.77-5.63 (m, 1H), 4.45-4.12 (m), 3.19-3.11 (m, 1H), 3.07-2.94 (m, 2H), 2.73-2.60 (m, 2H), 2.19 (bs, 1H), 1.49-1.36 (m, 4H), 0.65-0.59 (m, 1H).

Catalyst A⁹

$Rf = 0.6 (CH_2Cl_2/MeOH = 96/4)$

CF₃ ¹H-NMR (300 MHz, CDCl₃) δ : 8.69 (d, J = 4.5 Hz, 1H), 8.05 (d, J = 9.2 Hz, 1H), 7.86 (s, 2H), 7.68 (s, 2H), 7.42 (dd, J = 9.2, 2.6 Hz, 1H), 7.29 (s, 1H), 5.93 (bs, 1H), 5.76-5.65 (m, 1H), 5.07 (d, J = 4.9, 1H), 5.03 (bs, 1H), 3.99 (s, 3H), 3.46 (bs, 2H), 3.24 (dd, J = 13.8, 10.1 Hz, 1H), 2.90-2.79 (m, 2H), 2.42 (bs, 1H), 1.78-1.74 (m, 3H), 1.53-1.43 (m, 1H), 1.04-0.99 (m, 1H).

Catalyst C⁷

$Rf = 0.35 (CH_2Cl_2/MeOH = 95/5)$

¹H-NMR (300 MHz, CDCl₃) δ: 8.73 (bs, 1H), 8.40 (d, J = 6.3 Hz, 1H), 8.08 (d, J = 8.2 Hz, 1H), 7.81 (s, 2H), 7.71-7.66 (m, 1H), 7.63-7.57 (m, 2H), 7.24 (d, J = 5.4 Hz, 1H), 5.86 (bs, 1H), 5.68-5.57 (m, 1H), 4.97-4.91 (m, 2H), 3.30-3.20 (m, 3H), 3.14-3.06 (m, 1H), 2.73-2.68 (bs, 2H), 2.28 (bs, 1H), 1.72-1.62 (m, 3H), 0.95-0.83 (m, 1H).

Catalyst D¹⁰

$Rf = 0.33 (CH_2Cl_2/MeOH = 94/6)$

¹H NMR (300 MHz, CDCl₃) δ: 8.72 (d, J = 4.5 Hz, 1H), 8.02 (d, J = 9.2 Hz, 1H), 7.97 (s, 2H), 7.72 (bs, 1H), 7.60 (s, 1H), 7.44 (d, J = 4.4 Hz, 1H), 7.37 (d, J = 9.3, 2.2 Hz, 1H), 6.19 (bs, 1H), 5.68-5.56 (m, 1H), 5.06-5.00 (m, 2H), 4.79-4.71 (m, 1H), 3.77-3.60 (m, 2H), 3.32 (dd, J = 13.6, 10.5 Hz, 1H), 2.97-285 (m, 2H), 2.48-2.46 (m, 1H), 1.85 (bs, 3H), 1.49-1.59 (m, 1H), 1.42 (d, J = 6.0 Hz, 6H), 1.07 (d, J = 11.1 Hz, 1H).

Catalyst E¹¹

$Rf = 0.37 (CH_2Cl_2/MeOH = 94/6)$

¹H NMR (300 MHz, CD₃OD) δ: 8.67 (s, 1H), 8.20 (s, 2H), 7.90 (s, 2H), 7.74 (s, 1H), 7.60 (s, 1H), 7.38 (d, J = 8.5 Hz, 1H), 6.77 (d, J = 9.4 Hz, 1H), 5.84 (bs, 1H), 5.21-5.08 (m, 2H), 4.29-4.17 (m, 2H), 3.66-5.87 (m, 1H), 3.40-3.28 (m, 3H), 2.74 (bs, 1H), 1.99-1.91 (m, 3H), 1.70 (bs, 1H), 1.18-1.12 (m, 1H).

Synthesis of squaramide-based bifunctional catalysts derived from Cinchona alkaloids

Catalyst L

¹H NMR (300 MHz, CD₃OD) δ: 8.72 (d, J = 4.7 Hz, 1H), 7.96 (d, J = 9.2 Hz, 1H), 7.91 (d, J = 2.6 Hz, 1H), 7.61 (d, J = 4.8 Hz, 1H), 7.44 (dd, J = 9.2, 2.6 Hz, 1H), 6.36 (d, J = 11.2 Hz, 1H), 6.04-5.95 (m, 1H), 5.23-5.14 (m, 2H), 4.00 (s, 6H), 3.59-3.52 (m, 1H), 3.00-3.17 (m, 2H), 2.69 (bs, 1H), 1.82-1.93 (m, 5H), 0.99-0.92 (m, 1H).

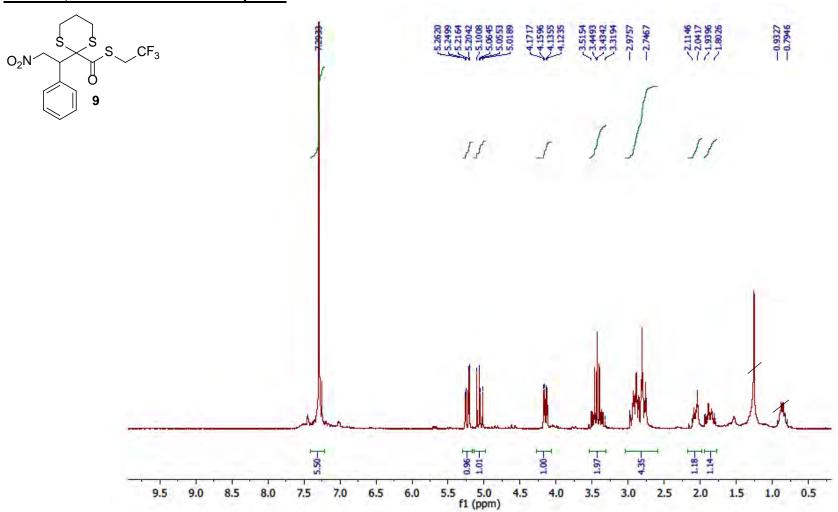
 1 H NMR (300 MHz, CD₃OD) δ: 189.22 (s), 188.07 (s), 167.90 (s), 159.35 (s), 147.02 (s), 135.91 (s), 130.36 (s), 129.36 (s), 123.13 (s), 118.96 (s), 116.85 (s), 100.36 (s), 67.58 (s), 66.02 (s), 55.36 (s), 51.88 (s), 48.32, 37.54, 29.16, 26.01 (s), 24.17 (s).

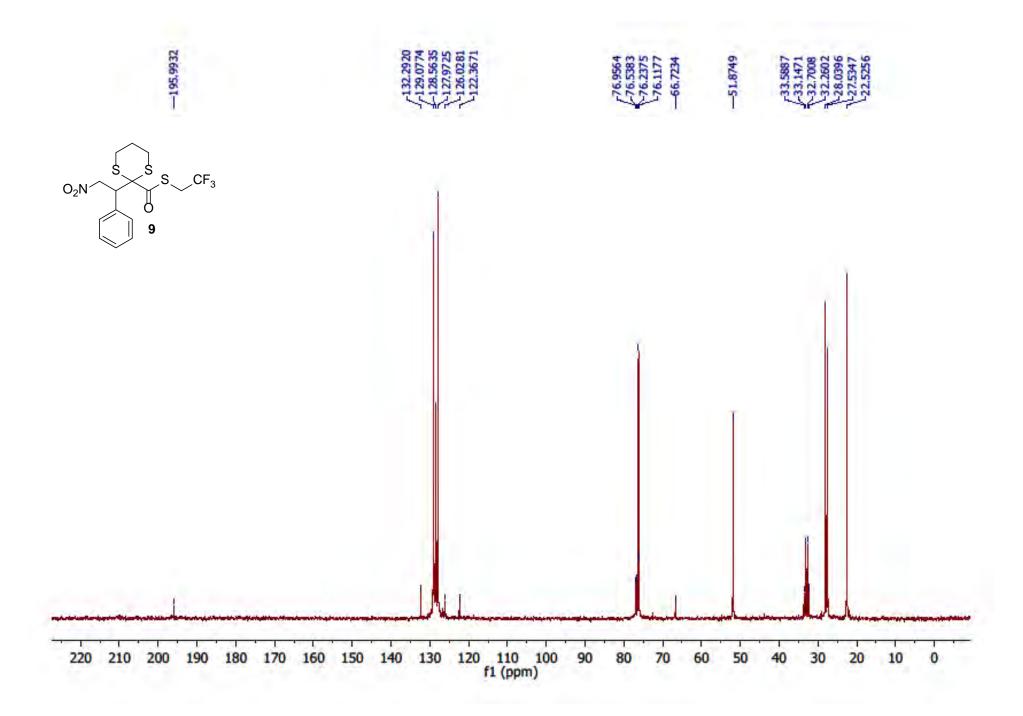
Catalyst M¹²

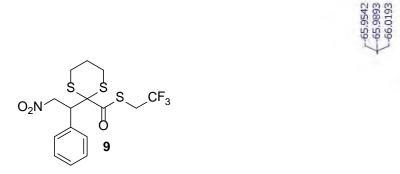
¹H NMR (300 MHz, DMSO) δ: 8.81 (d, J = 4.2 Hz, 1H), 7.99 (d, J = 9.2 Hz, 1H), 7.87-7.79 (m, 2H), 7.58 (d, J = 4.4 Hz, 1H), 7.46 (d, J = 9.1 Hz, 1H), 6.01-5.84 (m, 2H), 5.01-4.93 (m, 2H), 3.94 (s, 3H), 3.25-3.12 (m, 3H), 3.08-3.01 (m, 1H), 2.50 (bs, 1H), 2.24-2.15 (m, 1H), 1.52-1.43 (m, 4H), 0.56-0.44 (m, 1H).

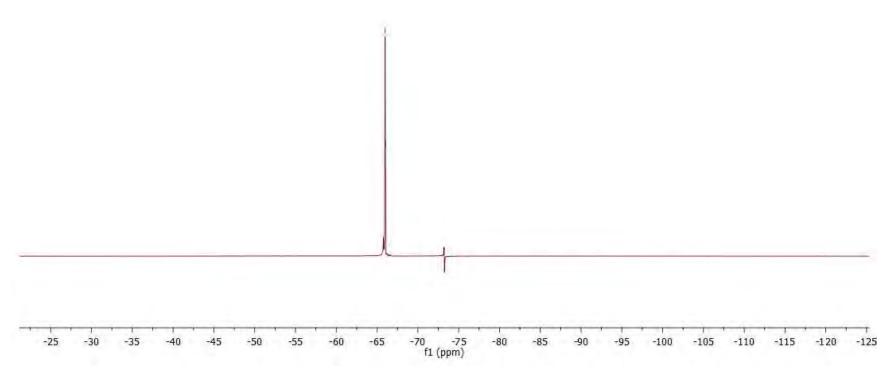
Synthesis of bifunctional catalysts derived from diaminocyclohexane

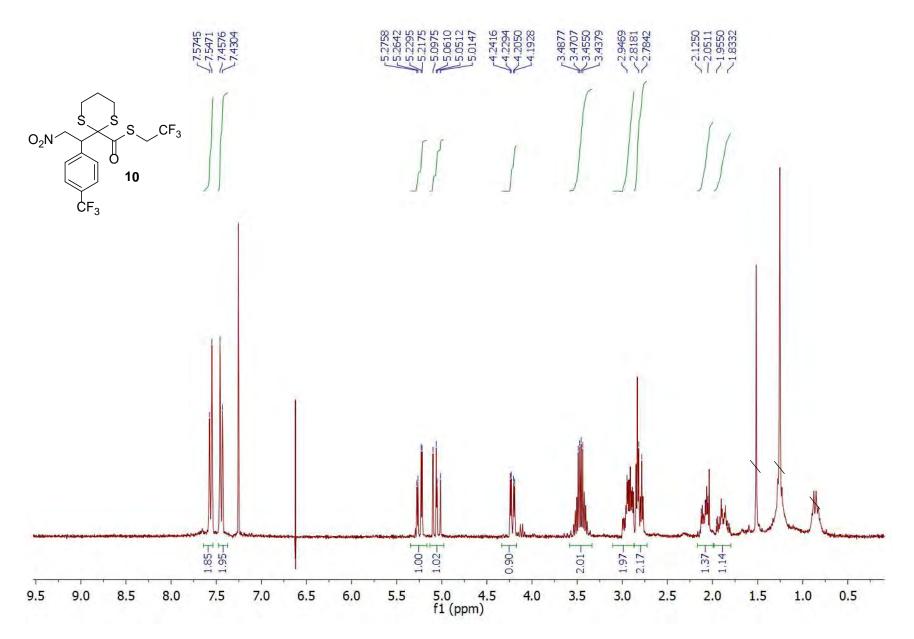
Catalyst B (Takemoto catalyst)¹³

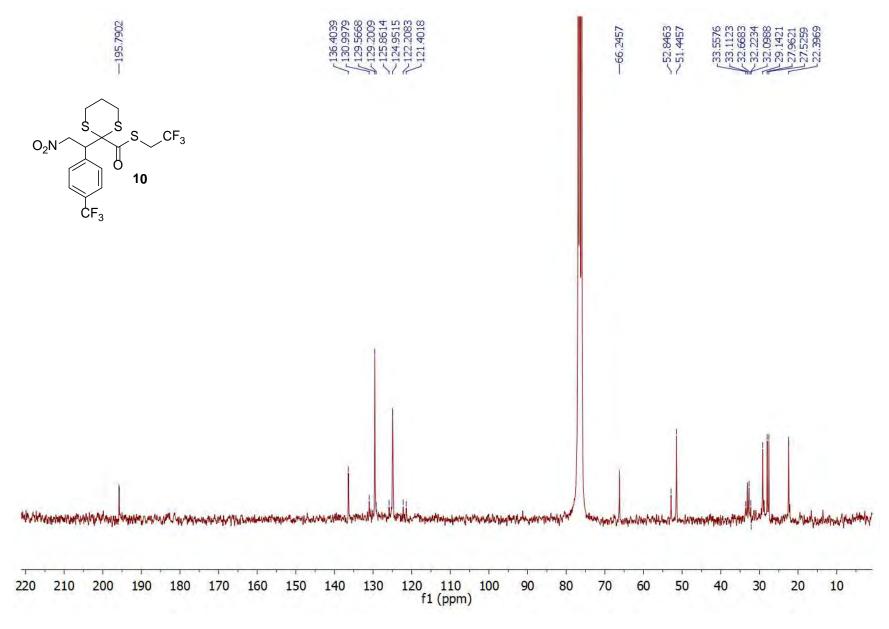

 $Rf = 0.23 (CH_2Cl_2/MeOH = 9/1)$

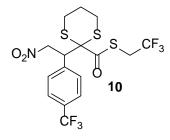

¹H-NMR (300 MHz, CDCl₃) δ: 7.92 (s, 2H), 7.63 (s, 1H), 3.99 (bs, 1H), 2.68 (bs, 1H), 2.45 (s, 7H), 2.40 (s, 1H), 2.00-1.97 (m, 1H), 1.93-1.89 (m, 1H), 1.82-1.78 (m, 1H), 1.40-1.17 (m, 4 H).

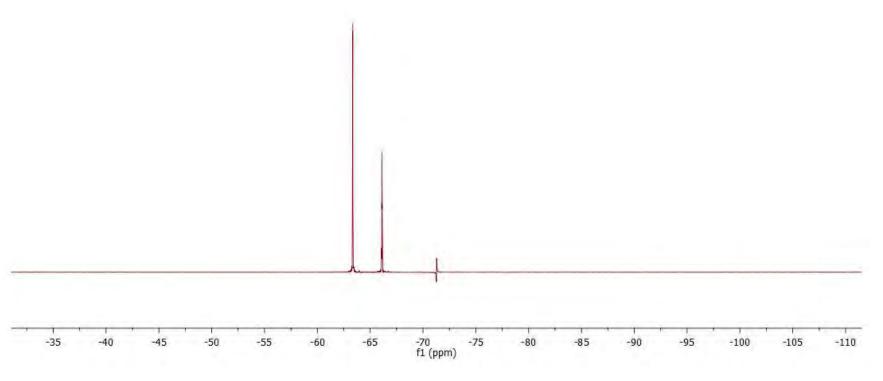

Catalyst N¹⁴

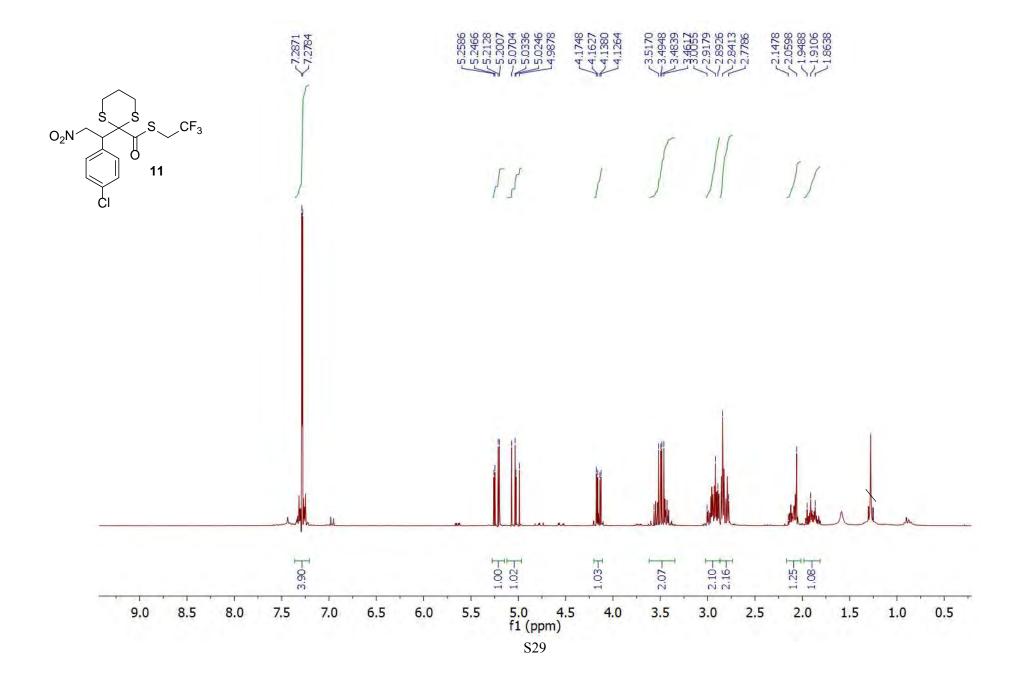

¹H NMR (300 MHz, CD₃OD) δ 7.81 (s, 2H), 7.33 (s, 1H), 4.11-3.94 (m, 1H), 2.57-2.44 (m, 1H), 2.30-2.27 (m, 1H), 2.33 (s, 3H), 1.98-1.75 (m, 3H), 1.60-1.49 (m, 1H), 1.45-1.27 (m, 1H).

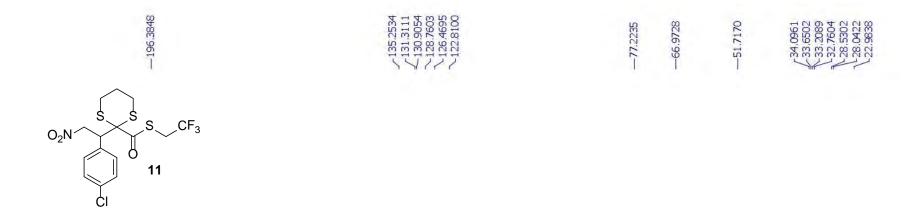

¹H NMR, ¹³C NMR and ¹⁹F NMR spectra

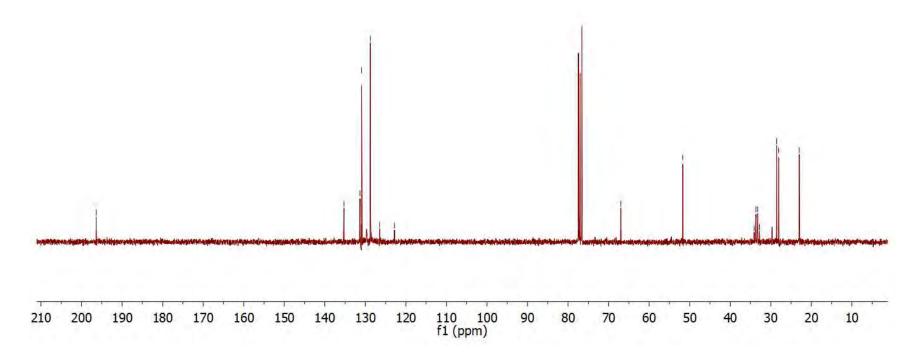


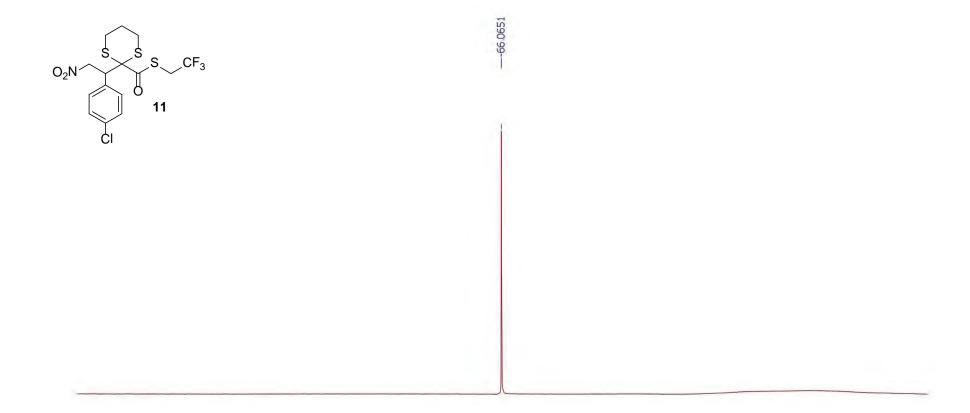


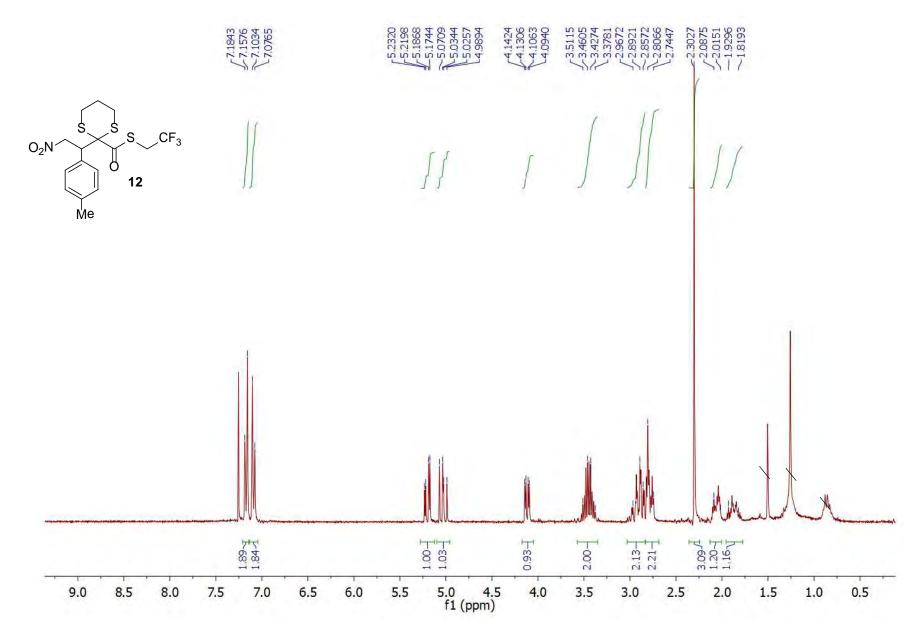


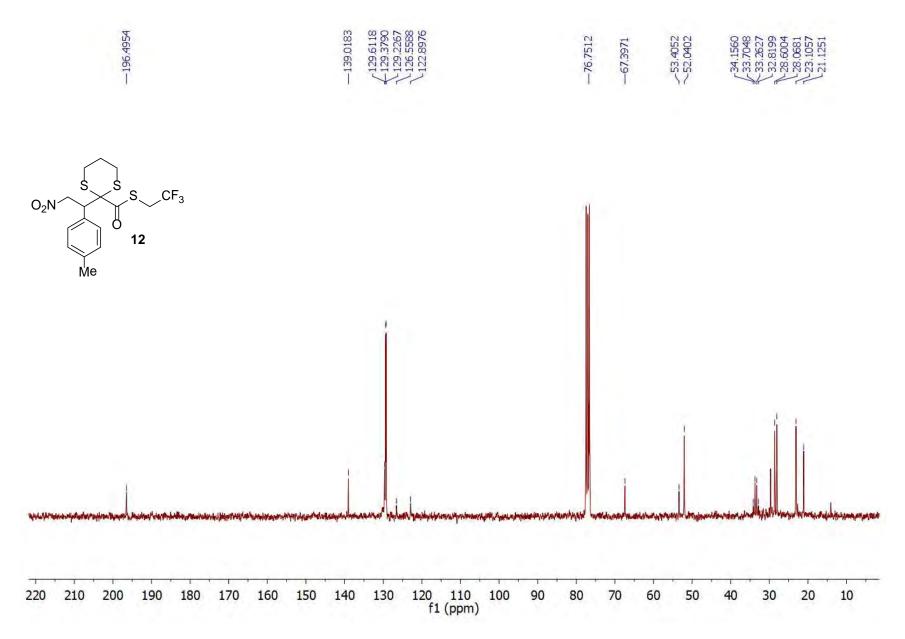


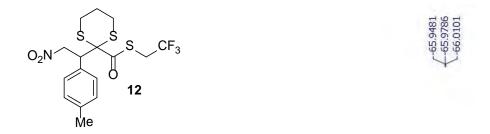


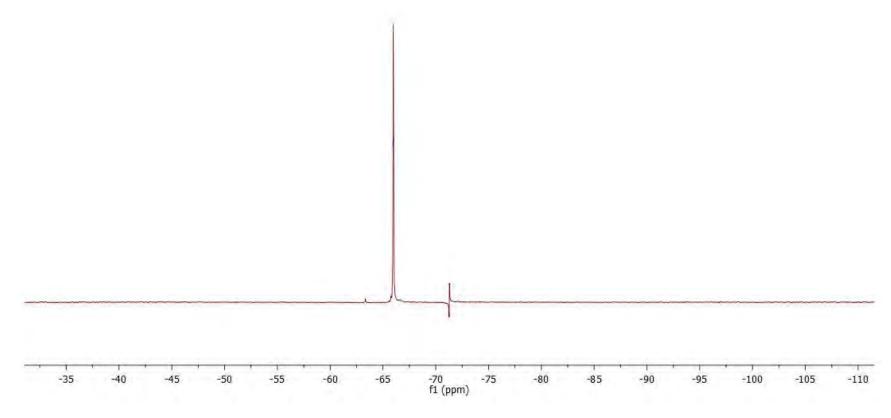




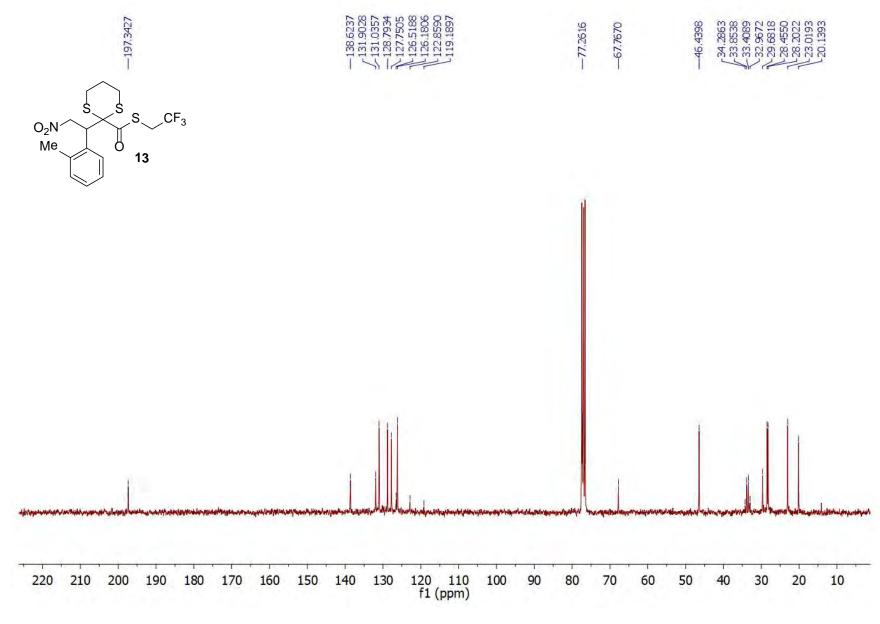


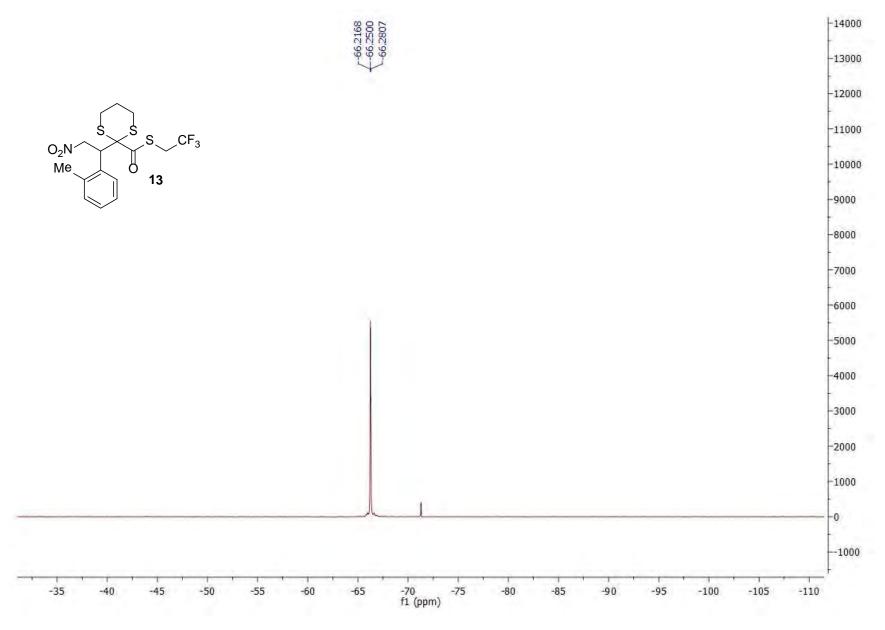


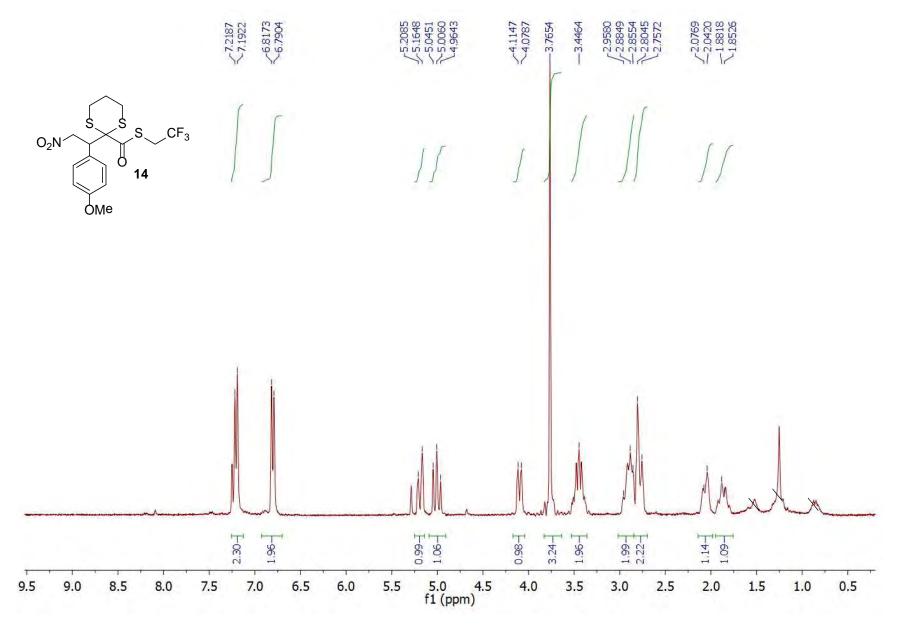


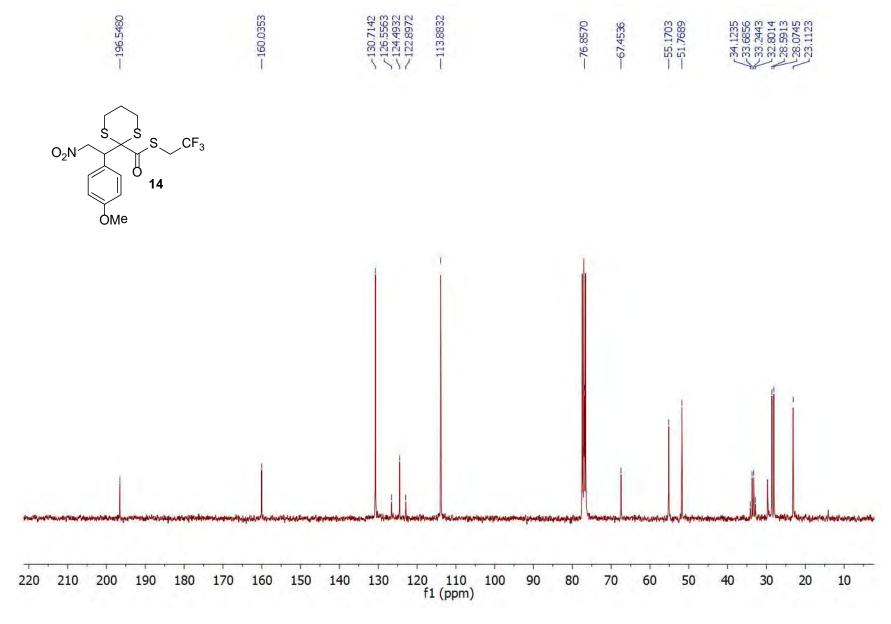


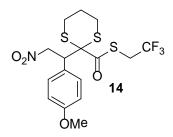


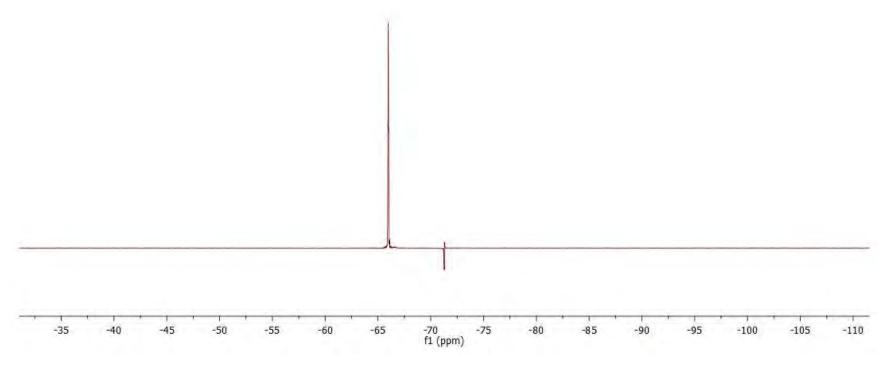


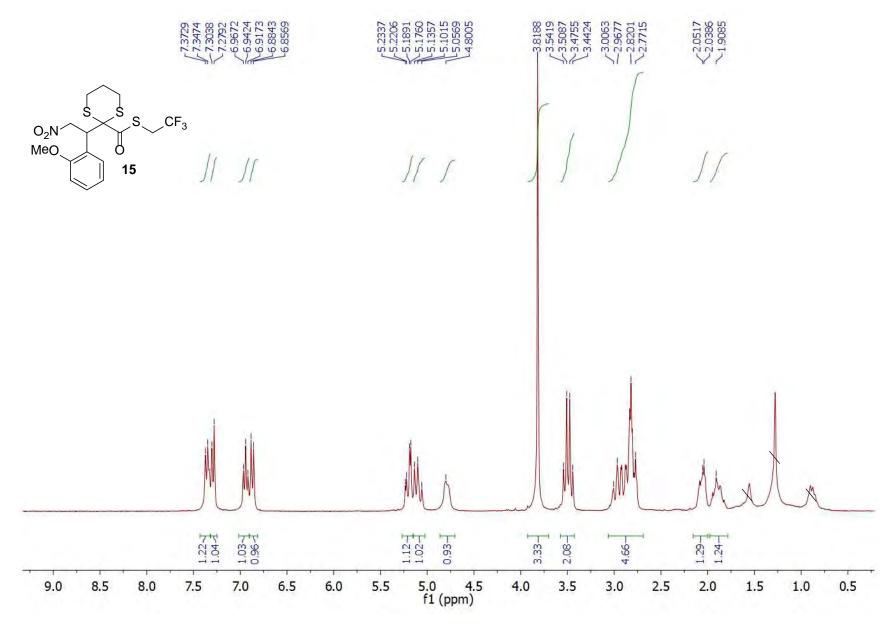


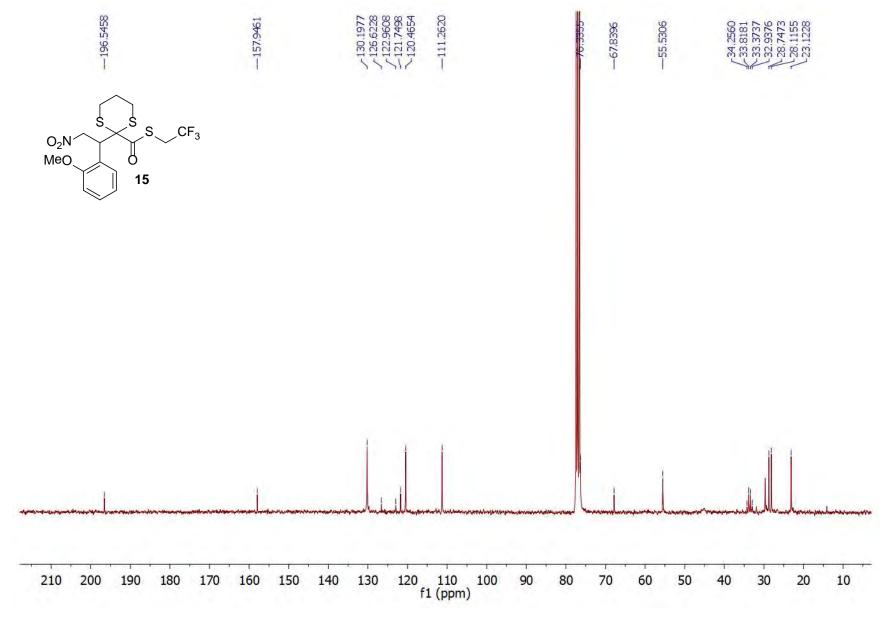


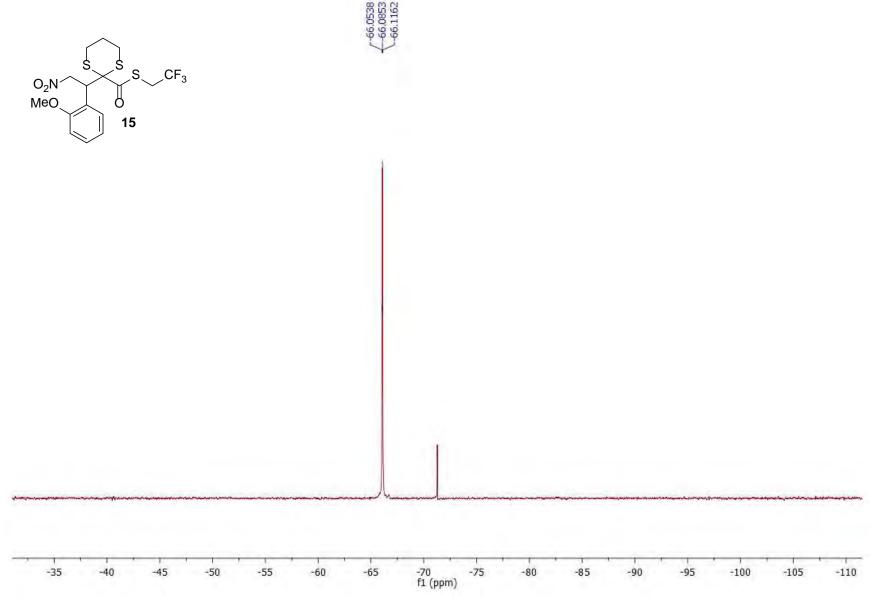


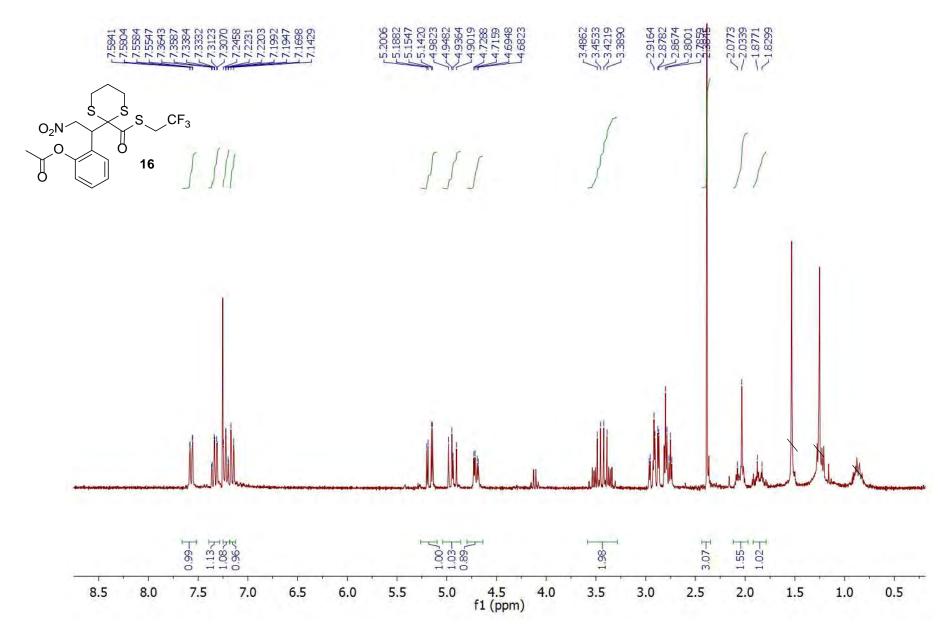


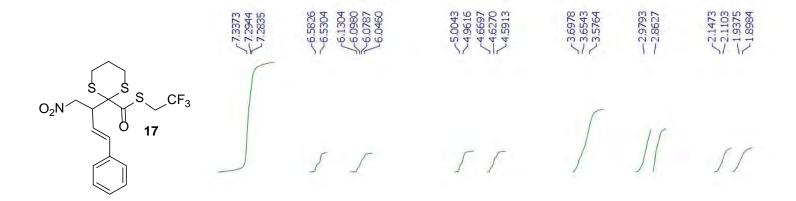


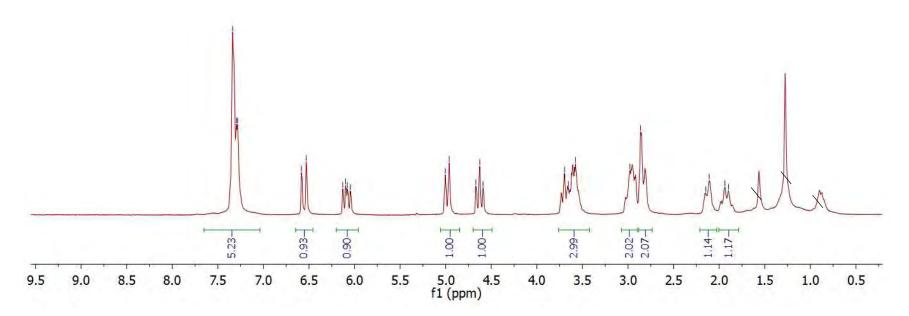


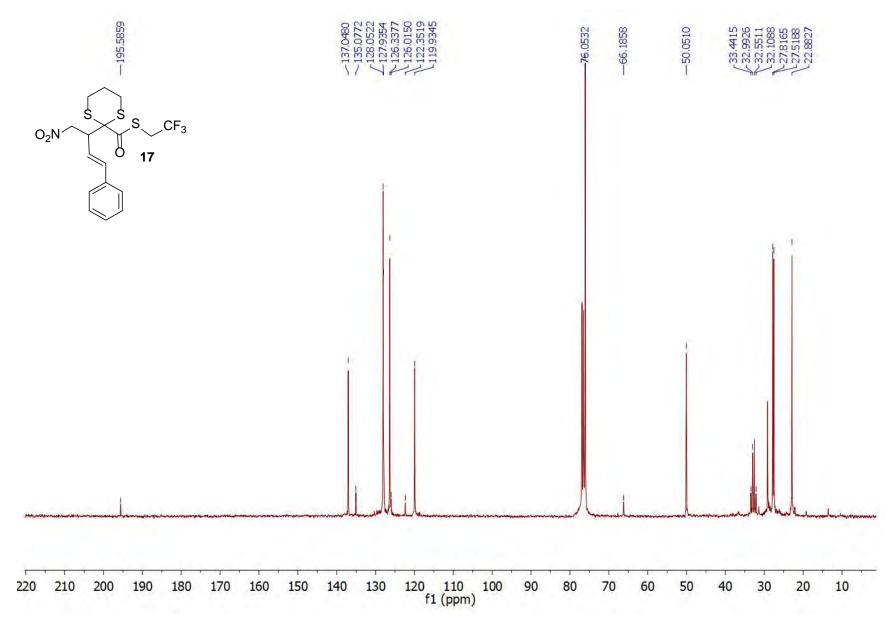


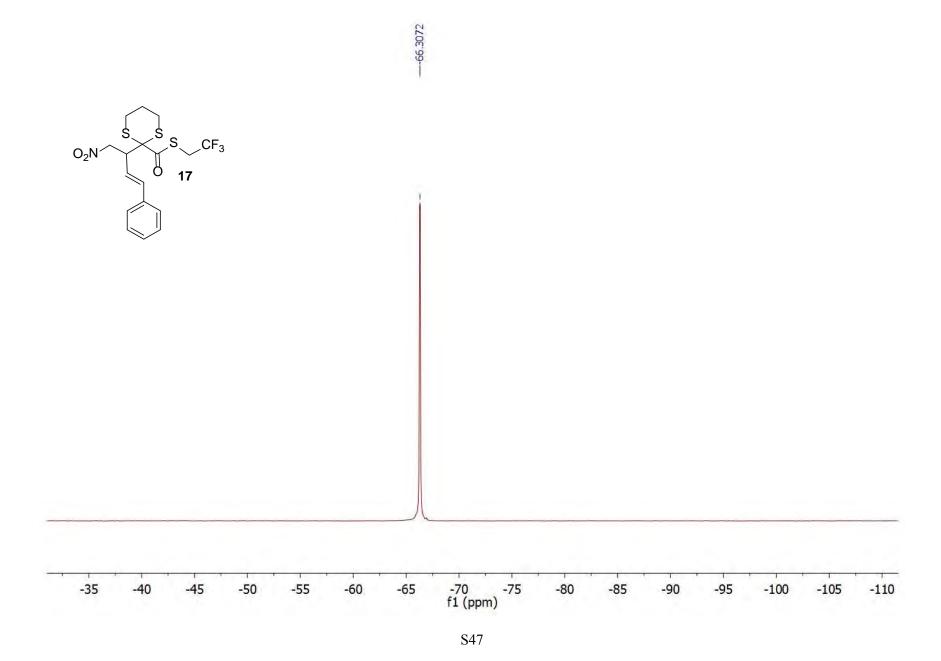


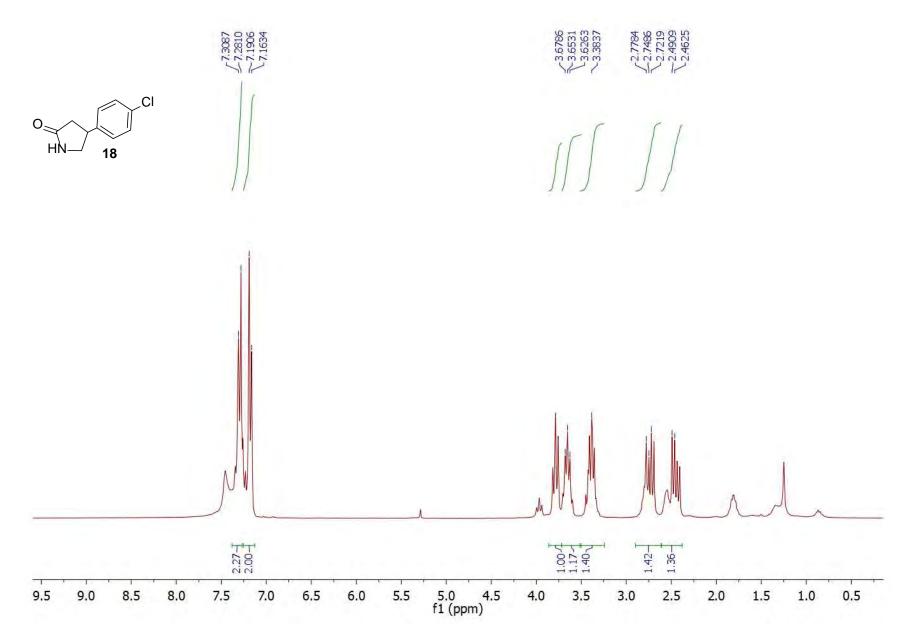


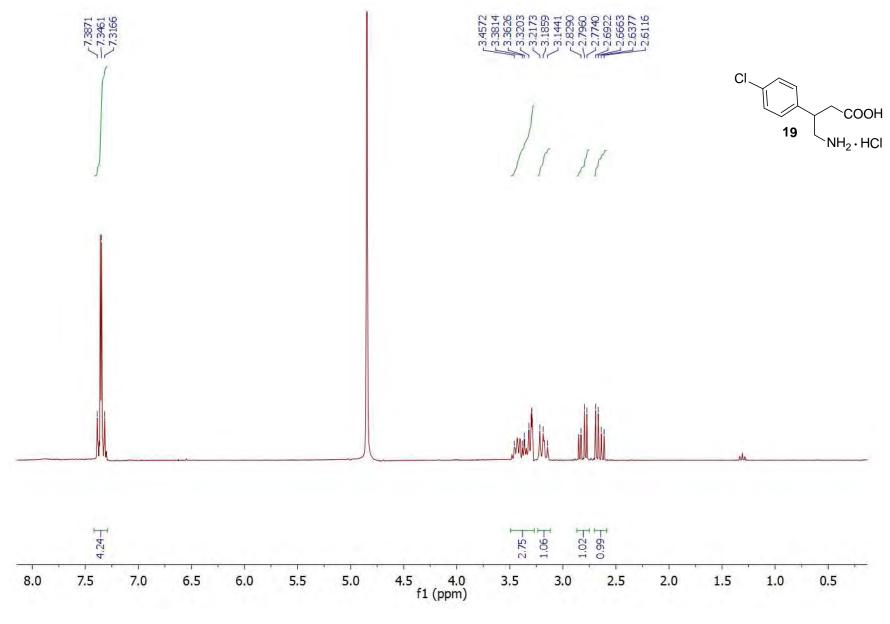


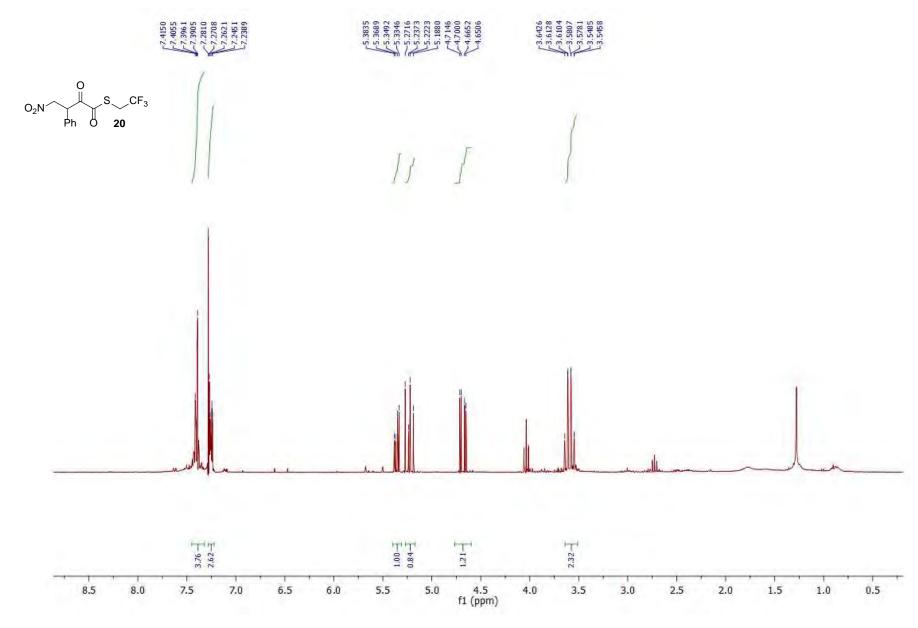


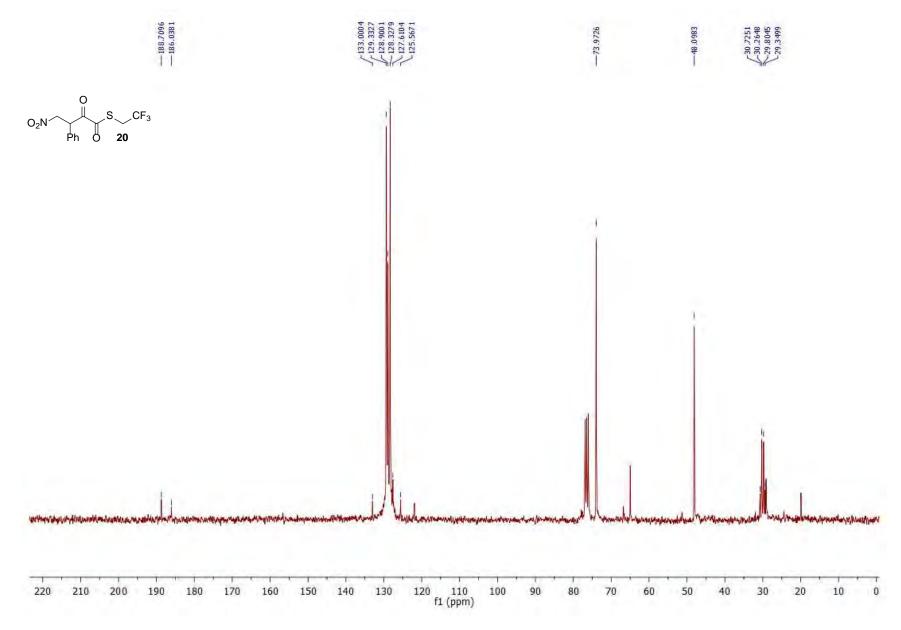


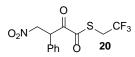


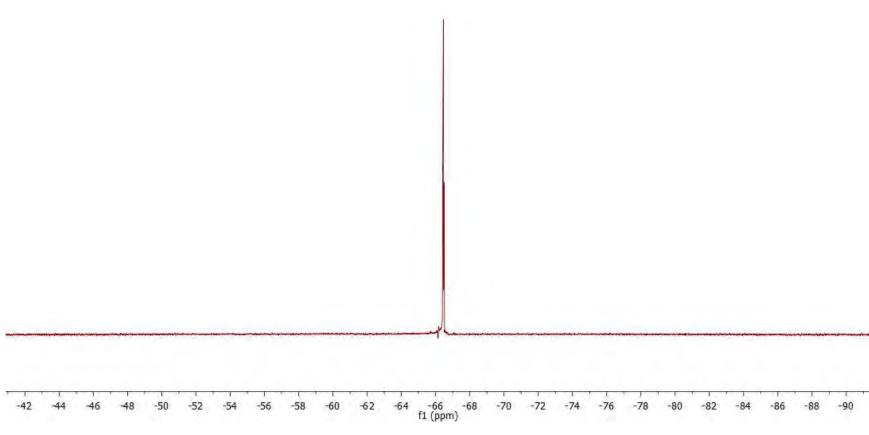


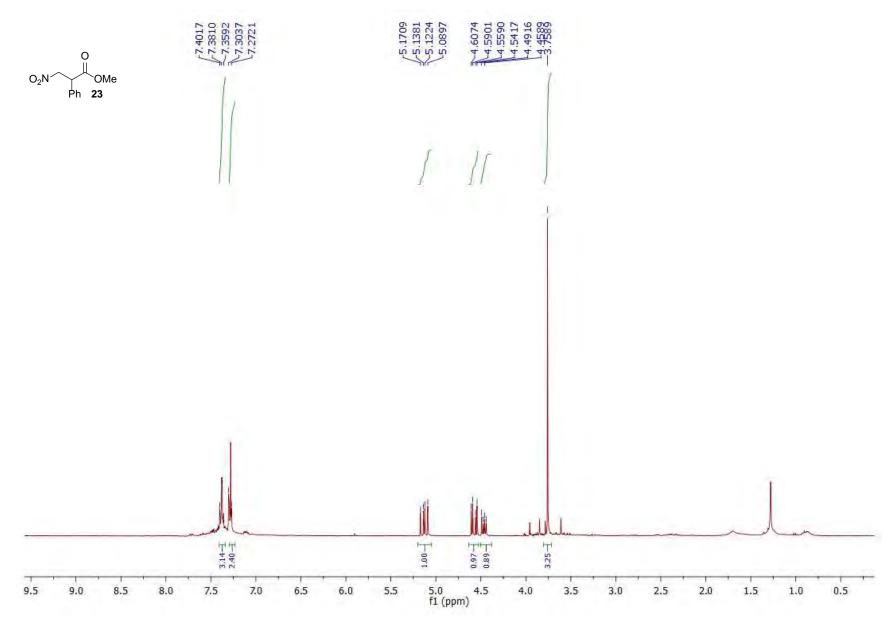


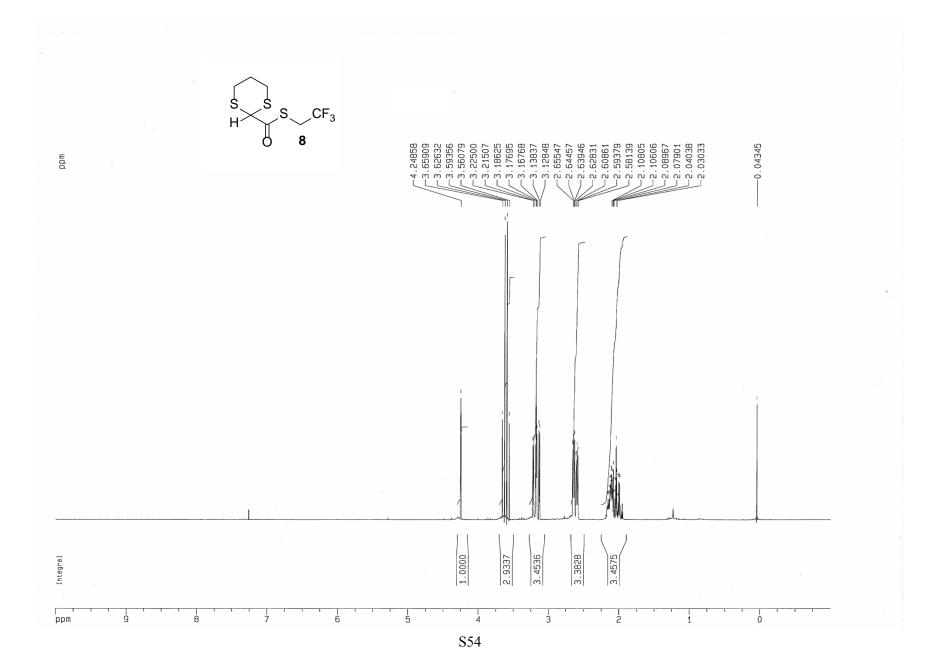


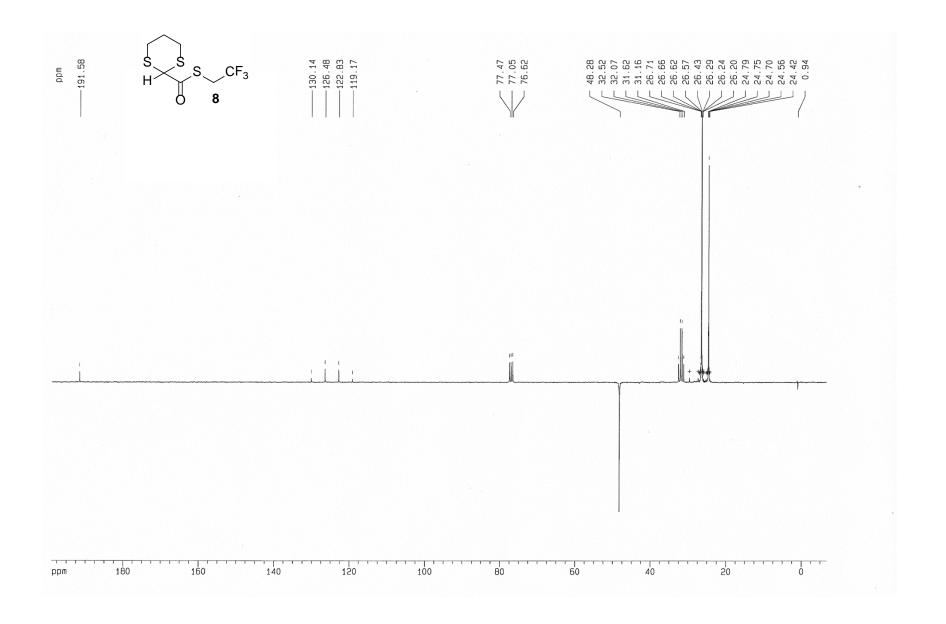


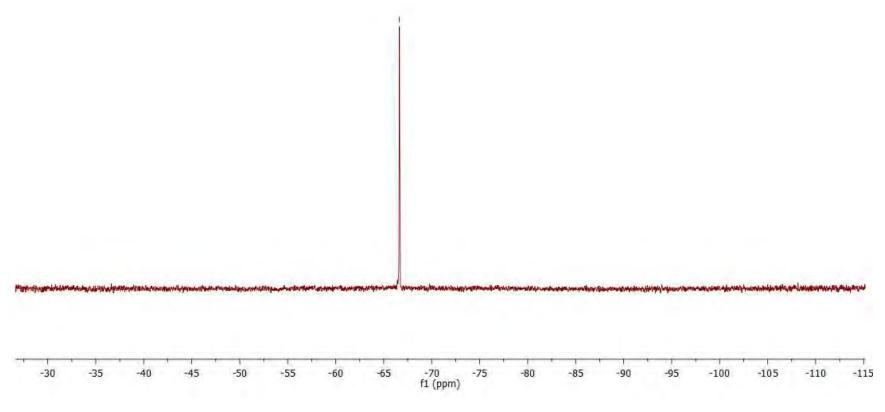


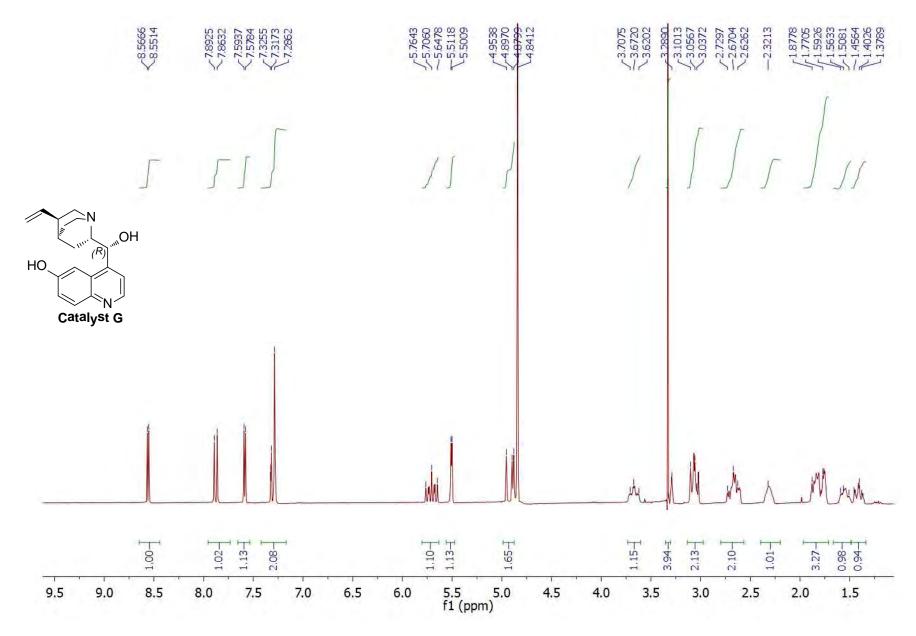


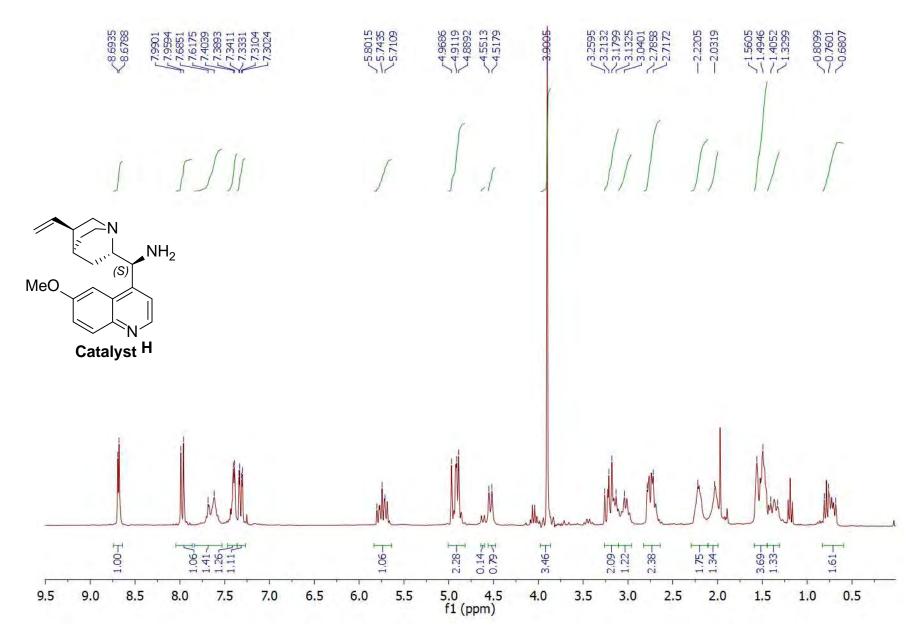


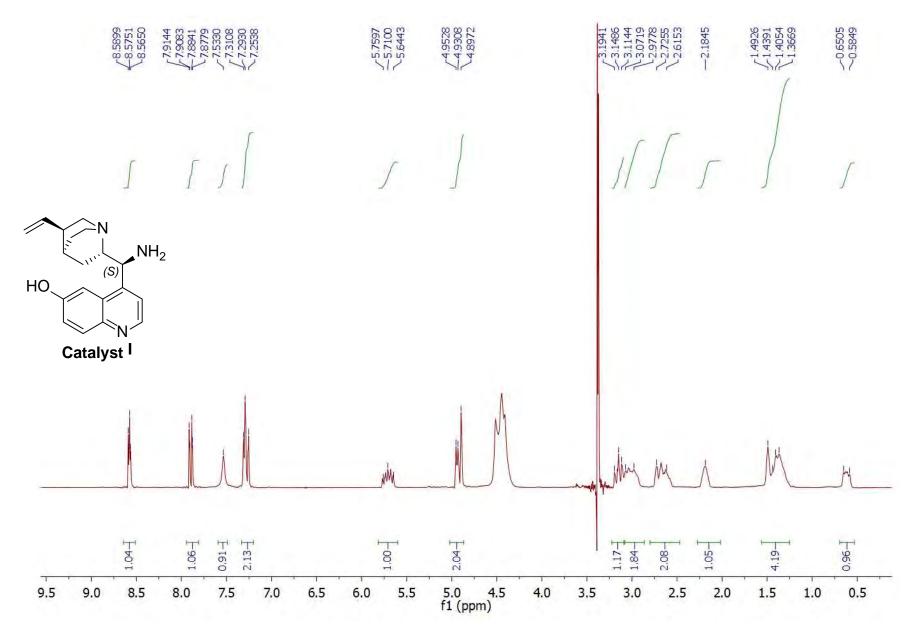


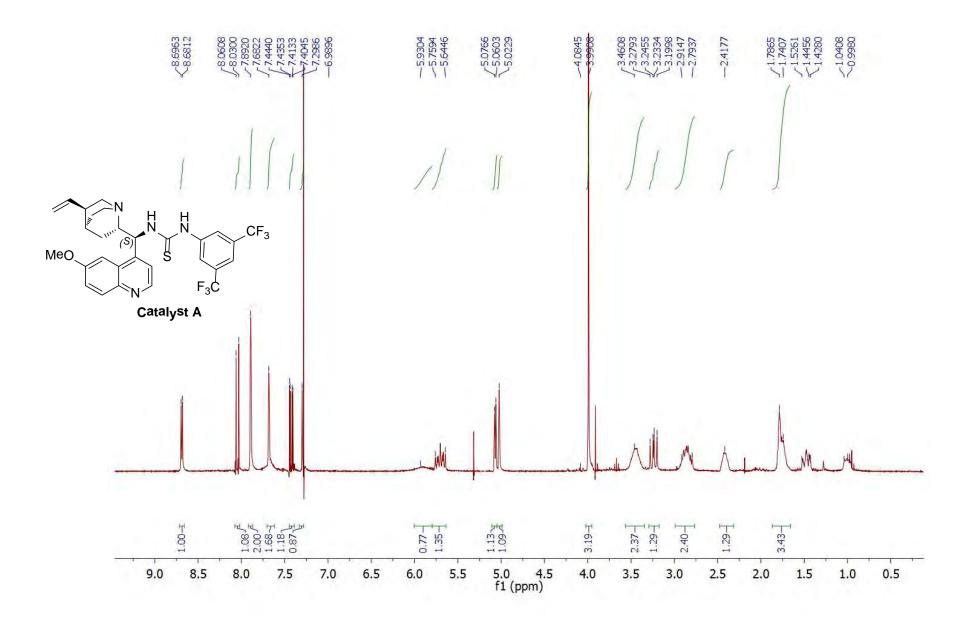


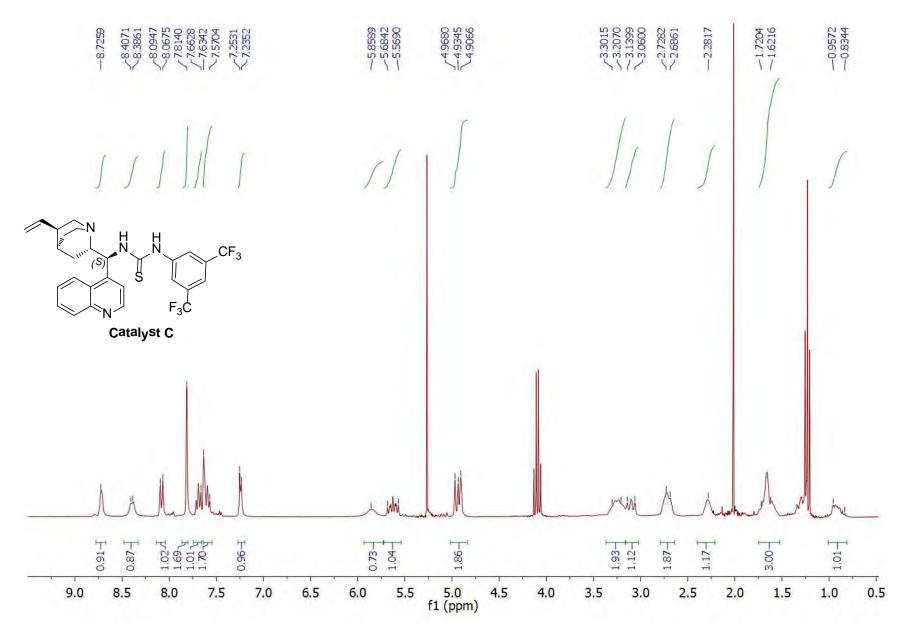


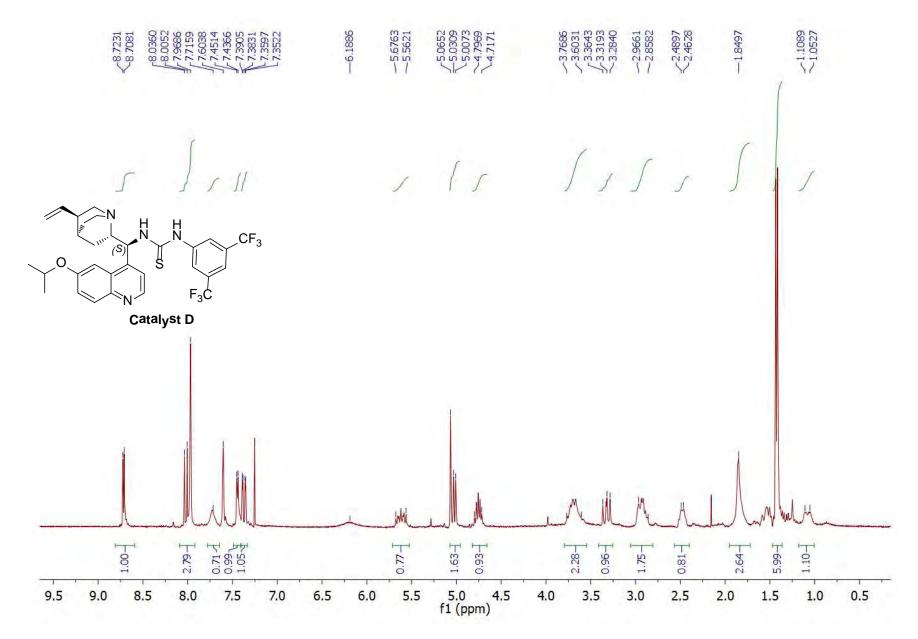


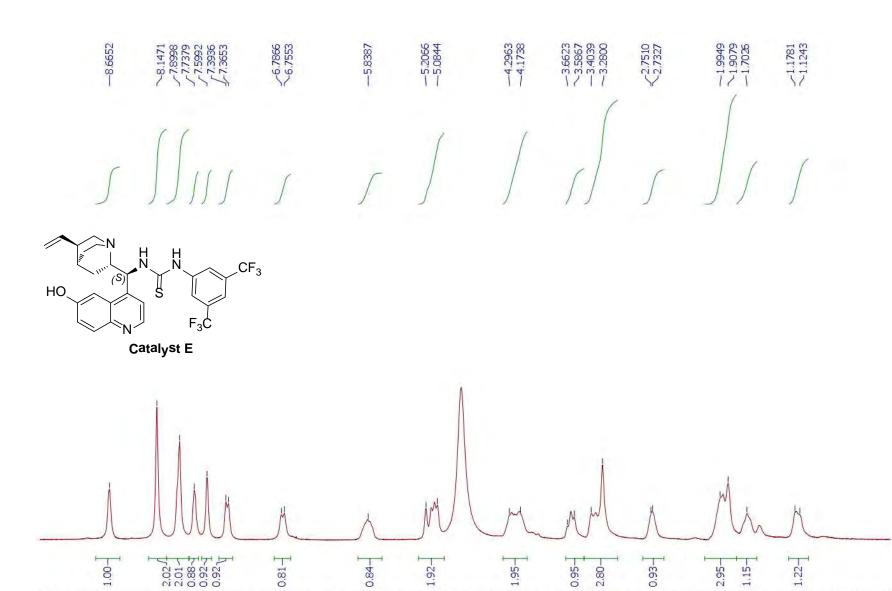












5.0 4.5 f1 (ppm)

4.0

3.5

3.0

2.5

2.0

1.5

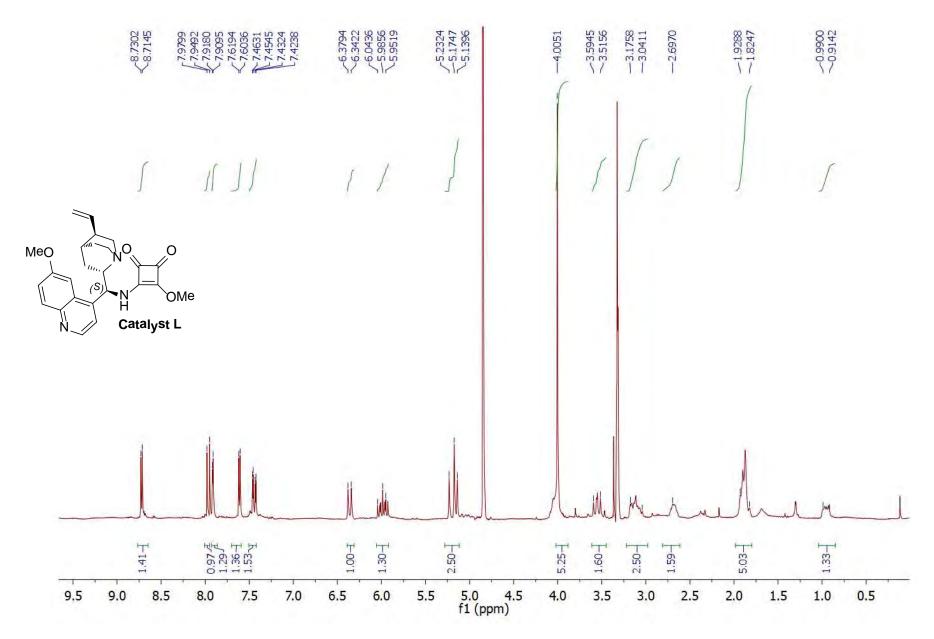
1.0

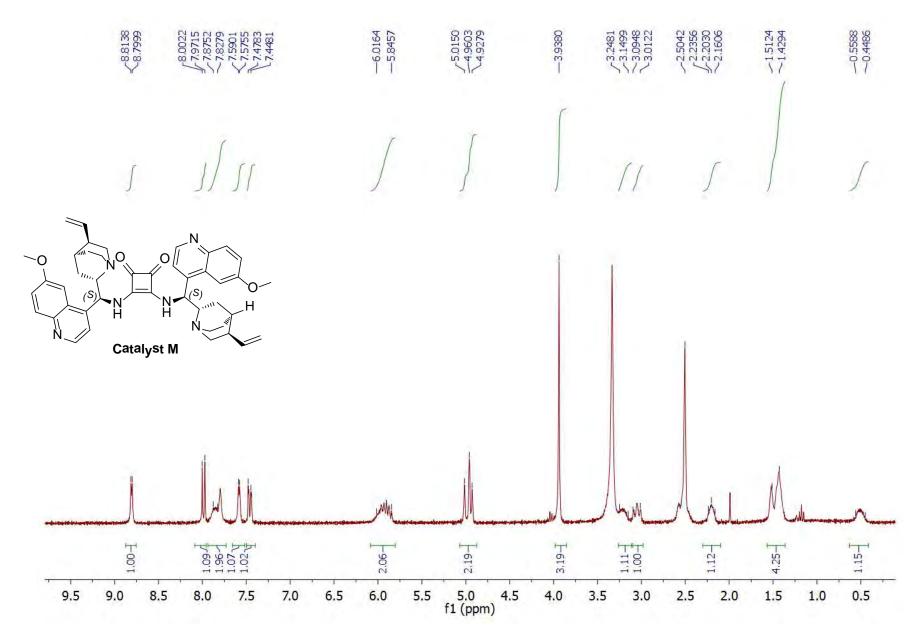
0.5

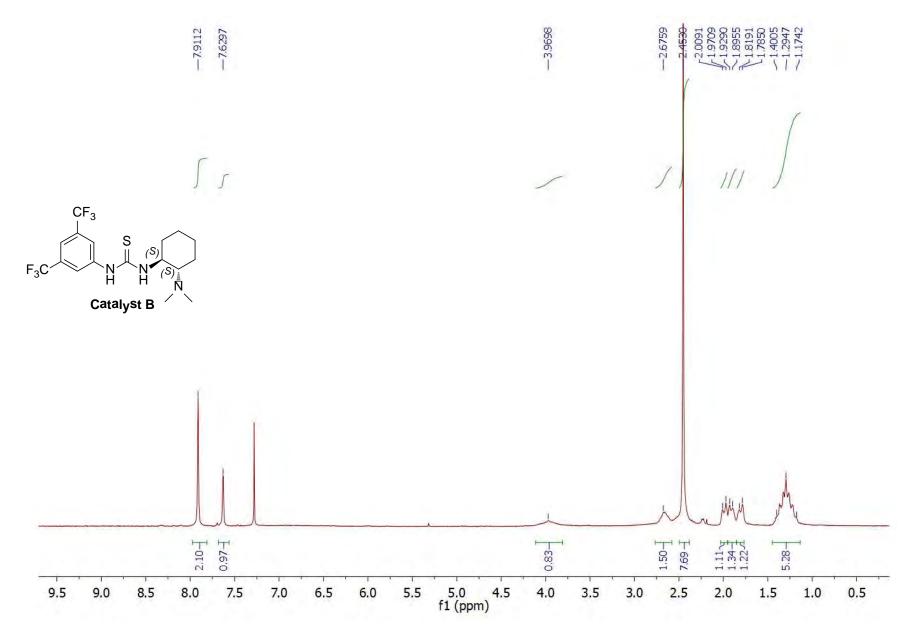
9.0

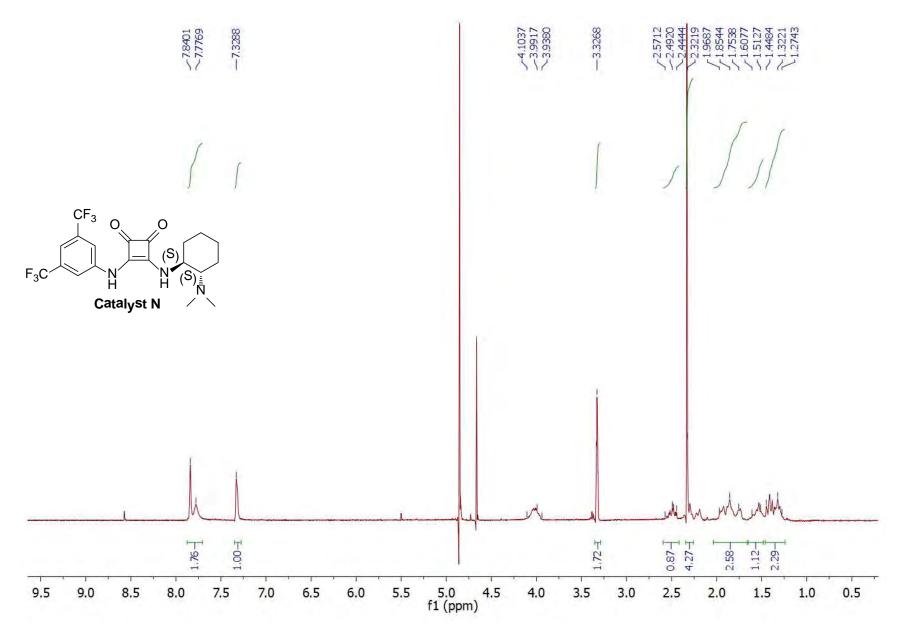
8.5

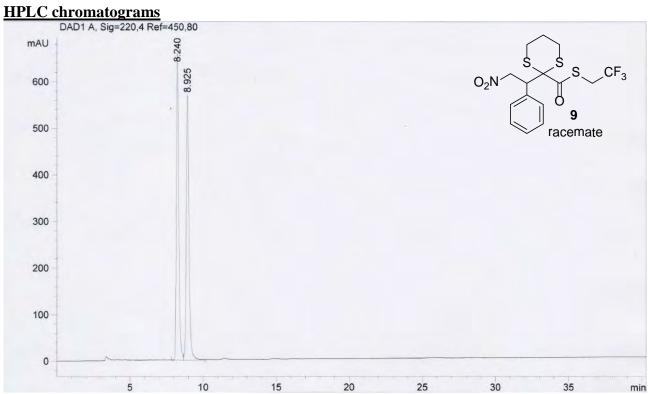
7.5

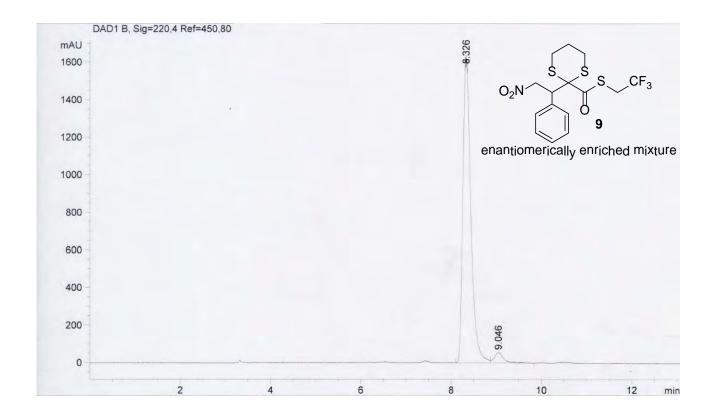

7.0

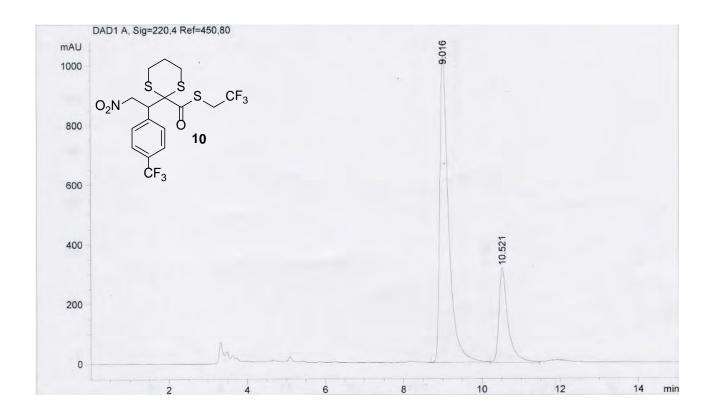

6.5

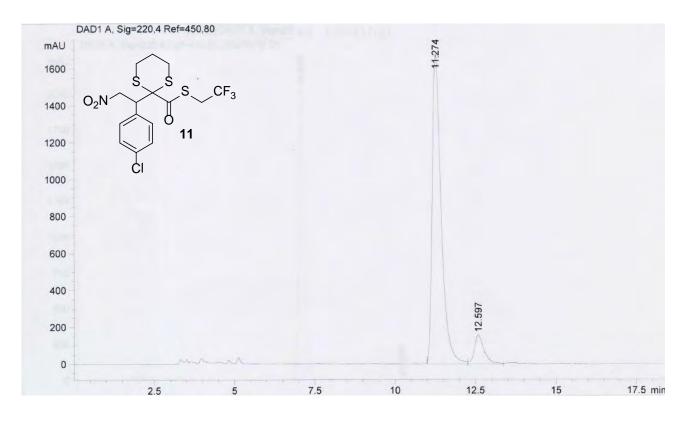

6.0

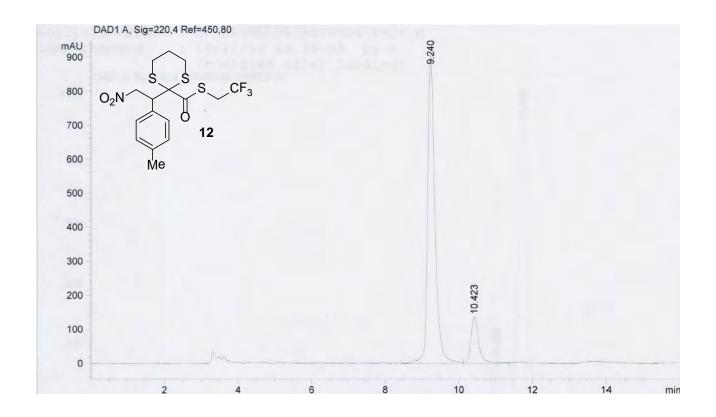

5.5

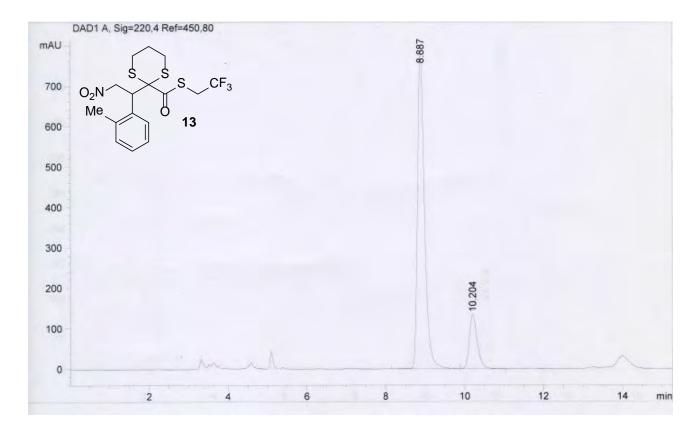

8.0

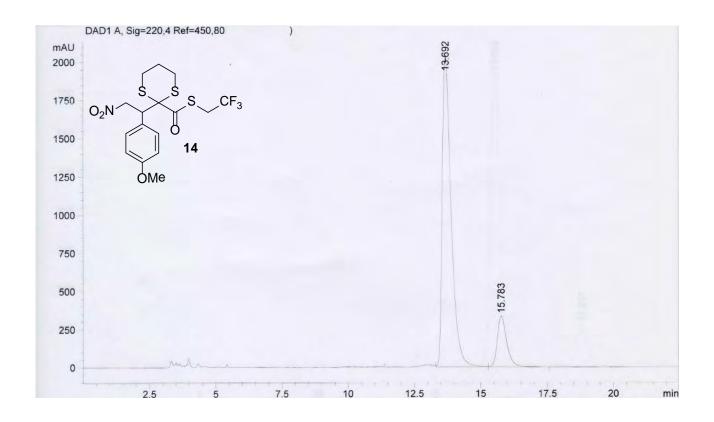


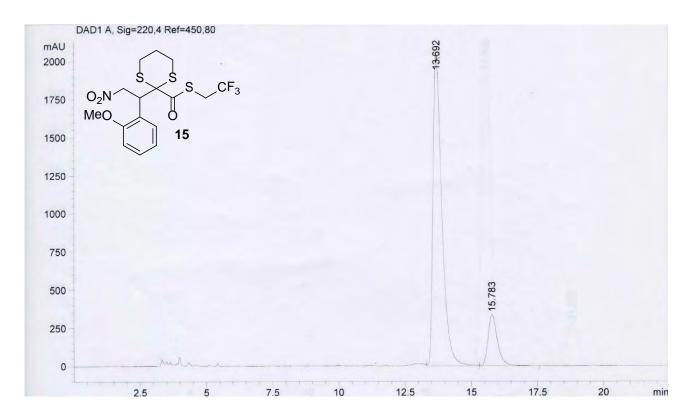


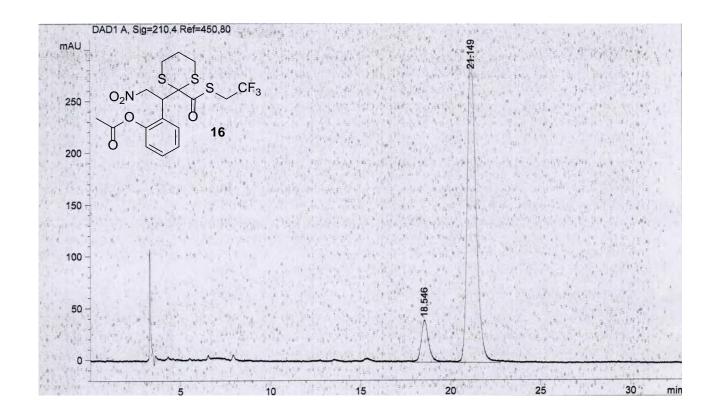


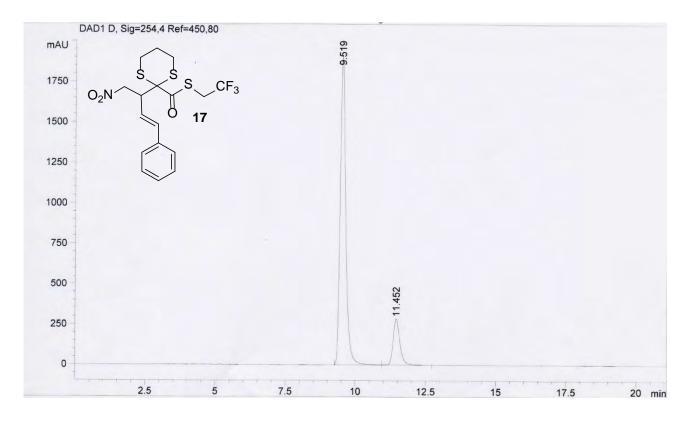


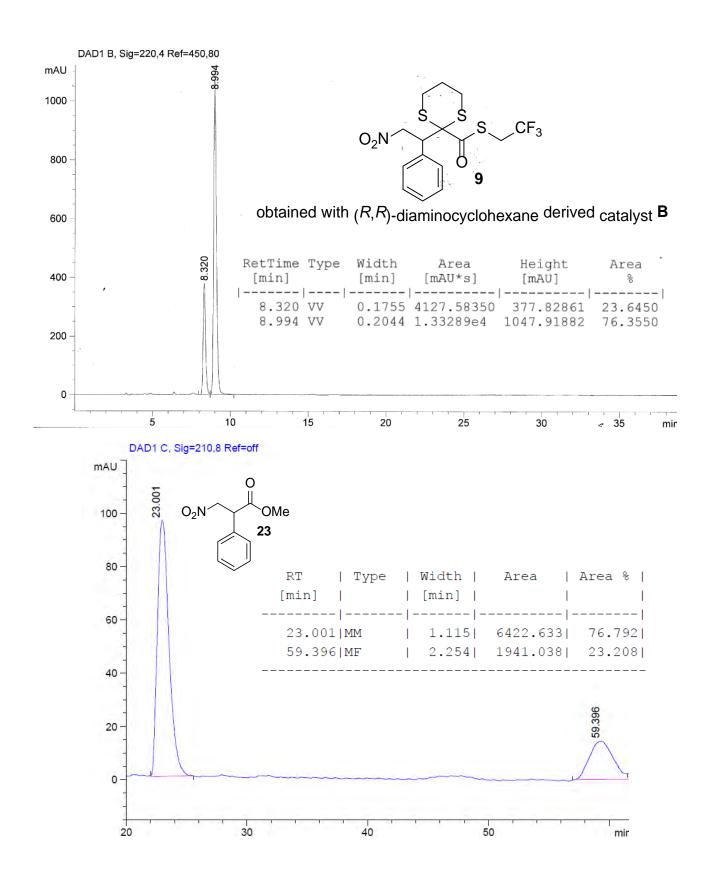












References

- ¹ K. L. Jensen, P. H. Poulsen, B. S. Donslund, F. Morana, K. A. Jørgensen, *Org. Lett.*, **2012**, *14*, 1516-1519.
- ² E. J. Corey, B. W. Erickson, J. Org. Chem., 1971, 36, 3553-3560.
- ³ I. Shina, Y. Fukuda, T. Ishii, H. Fujisawa, T. Mukaiyama, *Chem. Lett.*, **1998**, 831-832.
- ⁴ H. Liu, J. Xu, D. M. Du, *Org. Lett.*, **2007**, *9*, 4725-4728.
- ⁵ S.Belot, A. Massaro, A. Tenti, A. Mordini, A. Alexakis, *Org. Lett.*, **2008**, *10*, 4557-4560.
- ⁶ T. Furuya, A. E. Storm, T. Ritter, J. Am. Chem. Soc., **2009**, 131, 1662-1663.
- ⁷ C. G. Oliva, A. M. S. Silva, D. I. S. P. Resende, F. A. A. Paz, José A. S. Cavaleiro, Eur. J. Org. Chem., 2010, 3449-3458.
- W. C., W. Du, Y.-Z. Duan, Y. Wu, S.-Y. Yang, Y.-C. Chen, *Angew. Chem. Int, Ed.*, **2007**, *46*, 7667-7670.
 C. B. Tripathi, S. Kayal, S. M., *Org. Lett.*, **2012**, *14*, 3296-3299.
- ¹⁰ J. Li, T. Du, G. Zhang, Y. Peng, *Chem. Commun.*, **2013**, *49*, 1330-1332.
- ¹¹ T. Zhang, L. Cheng, S. Hameed, L. Liu, D. Wang, Y.-J. Chen, *Chem. Commun.*, **2011**, *47*, 6644-6646.
- ¹² J. W. Lee, T. H. Ryu, J. S. Oh, H. Y. Bae, H. B. Jang, C. E. Song, *Chem. Commun.*, **2009**, 7224-7226.
- ¹³ T. Okino, Y. Hoashi, Y. Takemoto, *J. Am. Chem. Soc.*, **2003**, *125*, 12672-12673; for ¹H NMR spectrum in CDCl₃ see T.-Y. Liu, J. Long, B.-J Li, L. Jiang, R. Li, Y. Wu, L.-S. Dingb, Y.-C. Chen, Org. Biomol. Chem. **2006**, *4*, 2097-2099.
- ¹⁴ Wen Yang, and Da-Ming Du, *Adv. Synth. Catal.* **2011**, *353*, 1241-1246.