Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Iodine catalyzed metal free domino process for the stereoselective synthesis of oxygen bridged bicyclic ethers

B. V. Subba Reddy,^a* B. Someswarao,^{a,b} N. Prudhviraju,^{a,b} B. Jagan Mohan Reddy,^b and B. Sridhar,^c S. Kiran Kumar^d

^aNatural Product Chemistry, ^cLaboratory of X-ray Crystallography, ^dCentre for Nuclear Magnetic Resonance, CSIR-Indian Institute of Chemical Technology, Tarnaka, 500 007, Hyderabad, India. Fax: +91-40-27160512. E-mail: basireddy@iict.res.in; homepage: <u>www.iictindia.org</u>; ^bDepartment of Organic Chemistry, Adikavi Nannaya University, Rajahmundry, 533105, India.

E-mail: basireddy@iict.res.in

Fax: 0091-40-27160512

Table of contents

1. General Procedure	S2-S3
2. Characterization data of 1a, 1b & 3(a-n)	
3. Crystal data for 3j	
4. 2D-NOESY and DQCOSY spectra of product 3a	S10-S11
5. Copies of ¹ H and ¹³ C NMR spectra of products	

General methods: IR spectra were recorded on FT-IR spectrometer (KBr) and reported in reciprocal centimetres (cm⁻¹). ¹HNMR spectra were recorded at 500 MHz and ¹³C NMR at 125 MHz. For 1H NMR, tetramethylsilane (TMS) was used as internal standard ($\delta = 0$) and the values are reported as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t= triplet, q =quartet, m = multiplet), and the coupling constants in Hz. For ¹³C NMR, CDCl₃ ($\delta = 77.27$) was used as internal standard and spectra were obtained with complete proton decoupling. HRMS data were obtained using EI ionization.

(1) General procedure:

Scheme 1. Synthetic procedure of 1a

Reagents & conditions: (a) Zn, BrCH₂COOEt, C_6H_6 , reflux (b) LAH, THF,0 °C- rt, (c) MsCl, TEA, DCM, -23 °C to rt (d) PPTS, wet acetone, reflux, (e) CH₃MgBr, THF, 0 °C to rt.

Scheme 2. Synthetic procedure of 1b

Reagents & conditions: (a) Li, NH₃, t-BuOH, -78 °C (b) LAH, THF,0 °C to rt.

General Procedure for Products 3(a-n):

To a stirred solution of aldehyde (1.1 mmol) and **1a** or **1b** (1.0mmol) in dichloromethane (5.0mL), was added 10 mol% of molecular iodine at 0 °C. The resulting mixture was stirred at 25 °C for the specified time. The progress of the reaction was monitored by TLC using ethyl acetate and hexane as eluent. After completion, the mixture was quenched with water and the product was extracted with ethyl acetate. The organic layers were washed with aqueous sodium thiosulfate followed by brine solution and dried over anhydrous sodium sulfate. Removal of the solvent followed by purification on silica gel (Merck 100–200 mesh) using ethyl acetate/hexane (2:8) as eluent gave the pure tetrahydropyran.

(2) Characterization data of starting materials and products:

Characterization data for 1a:

Light yellow Liquid; ¹H NMR (500 MHz, CDCl₃): δ 5.42 (s, 1H), 3.74-3.64 (m, 2H), 2.31-1.91 (m, 8H), 1.71 (td, J = 13.1, 7.1 Hz, 1H), 1.64-1.54 (m, 1H), 1.24 (s, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 133.5, 121.3, 68.3, 60.0, 40.5, 39.5, 35.2, 28.8, 25.6 ppm; IR(neat): v 3353.7, 2925.4, 1648.8, 1431.0, 1044.8, 764.5 cm⁻¹; HRMS (*m/z*) calcd for C₉H₁₆O₂: 156.11503, found: 156.11510.

Characterization data for 1b:

Light yellow Liquid; ¹H NMR (500 MHz, CDC_{13}): δ 5.41 (s, 1H), 4.01-3.95 (m, 1H), 3.75-3.59 (m, 2H), 2.62-2.30 (m, 2H), 2.29-2.11 (m, 3H), 2.10-1.93 (m, 2H), 1.89-1.77 (m, 1H), 1.76-1.63 (m, 2H); ¹³C NMR (125 MHz, $CDCl_3$): δ 133.9, 120.7, 66.2, 60.0, 40.6, 33.9, 30.4, 25.5 ppm; IR (neat): v 3377.5, 2927.1, 1714.6, 1648.6, 1439.2, 1049.9, 758.7 cm⁻¹; HRMS (*m/z*) calcd for C₈H₁₄O₂: 142.09938, found: 142.09942.

Characterization data of products:

7-Methyl-1-(2,4,5-trifluorophenyl)octahydro-4a,7-epoxyisochromene (3a):

Light yellow Liquid; ¹H NMR (500 MHz, CDCl₃): δ 7.29-7.22 (m, 1H, Ar-H), 6.93-6.85 (m, 1H, Ar-H), 4.34 (dd, J = 1.0, 10.5 Hz, 1H, H1), 4.01 (ddd, J = 1.2, 6.0, 11.5 Hz, 1H, H5), 3.83 (ddd, J = 3.0, 11.5, 12.7 Hz, 1H, H5'), 2.07 (ddd, J = 6.1, 12.8, 14.8 Hz, 1H, H4), 2.01-2.03 (m, 1H, H4'), 2.04-1.95 (m, 1H, H2), 1.74-1.54 (m, 5H, H8, H8', H9, H9', H6), 1.49 (s, 3H, Me10), 1.15-1.10 (m, 1H, H6'); ¹³C NMR (125 MHz, CDCl₃): δ 156.1, 156.0, 154.2, 154.1, 150.4, 150.3, 150.2, 148.4, 148.3, 148.2, 148.1, 148.0, 146.2, 146.1, 124.5, 124.4, 116.7, 116.6, 116.5, 105.5, 105.3, 105.2, 105.1, 84.5, 82.1, 75.7, 65.5, 48.8, 39.3, 37.4, 37.3, 30.0, 21.2 ppm; ¹⁹F NMR (470 MHz, CDCl₃): δ -118.98 (d, J = 15.5 Hz), -134.32 (s), -134.36 (s), -142.24 (dd, J = 21.4, 15.6 Hz); IR(neat): v 2957.8, 2284.4, 1638.4,1514.6 1206.2, 767.9 cm⁻¹; HRMS (*m/z*) calcd for C₁₆H₁₇F₃O₂: 298.11806, found: 298.11750.

7-Methyl-1-(4-nitrophenyl)octahydro-4a,7-epoxyisochromene (3b):

Light yellow Liquid; ¹H NMR (500 MHz, CDCl₃): δ 8.19 (d, J = 8.7 Hz, 2H), 7.50 (d, J = 15.0 Hz, 2H), 4.19–4.00 (m, 2H), 3.97–3.77 (m, 1H), 2.22–1.85 (m, 3H), 1.75–1.56 (m, 5H), 1.52 (s, 3H), 1.20-1.12 (m, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 148.2, 147.4, 128.0, 123.5, 84.6, 82.9, 82.1, 65.3, 49.1, 40.5, 37.5, 37.1, 30.1, 21.3 ppm; IR(neat): v 2937.9, 2267.5, 1734.8, 1527.4, 1374.3, 1074.3, 819.6, 746.1 cm⁻¹; HRMS (*m/z*) calcd for C₁₆H₁₉NO₄: 289.13141, found: 289.13131.

1-(4-Isopropylphenyl)-7-methyloctahydro-4a,7-epoxyisochromene (3c):

Light yellow Liquid; ¹H NMR (500 MHz, CDCl₃): δ 7.26 (d, *J* = Hz, 2H), 7.18 (d, *J* = 8.1 Hz, 2H), 4.09-3.99 (m, 1H), 3.99 (dd, *J* = 24.1, 5.7 Hz, 1H), 3.84 (ddd, *J* = 12.9, 11.5, 2.8 Hz, 1H), 2.98-2.78 (m, 1H), 2.14–2.05 (m, 2H), 1.98 (dd, *J* = 14.7, 1.9 Hz, 1H), 1.73–1.54 (m, 4H), 1.49 (s, 3H), 1.22 (d, *J* = 7.0 Hz, 6H), 1.17–1.11 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 148.5, 137.7, 127.4, 126.4, 84.4, 83.7, 82.3, 65.3, 48.5, 40.7, 37.6, 37.3, 33.8, 30.3, 23.9, 23.9, 21.4 ppm; IR(neat): v 2960.4, 2864.9, 1731.8, 1457.4, 1084.8, 822.5 cm⁻¹; HRMS (*m/z*) calcd for C₁₉H₂₆O₂: 286.19328, found: 286.19402.

1-(4-Bromothiophen-2-yl)-7-methyloctahydro-4a,7-epoxyisochromene (3d):

Light yellow Liquid; ¹H NMR (500 MHz, CDCl₃): δ 7.16 (d, J = 1.4 Hz, 1H), 6.89 (d, J = 0.8 Hz, 1H), 4.21 (d, J = 10.3 Hz, 1H), 4.03 (ddd, J = 11.5, 6.0, 1.1 Hz, 1H), 3.83 (ddd, J = 12.9, 11.5, 2.9 Hz, 1H), 2.10–2.02 (m, 2H), 1.97 (dd, J = 14.8, 1.9 Hz, 1H), 1.80 (dd, J = 12.5, 8.1 Hz, 1H), 1.75–1.56 (m, 5H), 1.50 (s, 3H), 1.17 (dt, J = 12.5, 3.1 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 145.4, 127.2, 122.3, 108.9, 84.6, 82.1, 78.7, 65.4, 49.2, 41.1, 37.3, 37.2, 30.0, 21.3 ppm; IR(neat): v 2925.0, 1721.1, 1362.2, 1091.4,765.6 cm⁻¹; HRMS (*m/z*) calcd for C₁₄H₁₇BrO₂S: 328.01326, found: 328.01320.

1-(3-Bromophenyl)-7-methyloctahydro-4a,7-epoxyisochromene (3e):

Light yellow Liquid; ¹H NMR (500 MHz, CDCl₃): δ 7.51 (s, 1H), 7.41 (d, J = 7.8 Hz, 1H), 7.26 (d, J = 6.3 Hz, 1H), 7.19 (t, J = 7.8 Hz, 1H), 4.04 (dd, J = 11.4, 5.9 Hz, 1H), 3.96 (d, J = 10.3 Hz, 1H), 3.88–3.78 (m, 1H), 2.15–1.93 (m, 3H), 1.75–1.54 (m, 5H), 1.50 (s, 3H), 1.18-1.08 (m, 1H). ¹³C NMR (125 MHz, CDCl₃): δ 142.9, 130.9, 130.4, 129.8, 126.1, 122.5, 84.5, 83.2, 82.1, 65.3, 48.8, 40.5, 37.5, 37.2, 30.2, 21.3 ppm; IR(neat): v 2936.7, 2861.8, 2357.3, 1717.0, 1609.4, 1371.5,1262.7, 1020.2, 958.6, 770.9 cm⁻¹; HRMS (*m*/*z*) calcd for C₁₆H₁₉BrO₂: 323.00715, found: 323.00700.

4-(7-Methyloctahydro-4a,7-epoxyisochromen-1-yl)phenol (3f):

Light yellow Liquid; ¹H NMR (500 MHz, CDCl₃): δ 7.21 (d, J = 8.4 Hz, 2H), 6.76 (d, J = 8.5 Hz, 2H), 4.06–3.99 (m, 1H), 3.93 (d, J = 10.4 Hz, 1H), 3.90-3.80 (m, 1H), 2.13–2.02 (m, 2H), 1.98 (dd, J = 14.8, 1.9 Hz, 1H), 1.77–1.54 (m, 5H), 1.49 (s, 3H), 1.10-1.00 (m, 1H); ¹³C NMR (125 MHz, CDCl₃); δ 155.3, 132.5, 129.0, 115.2, 84.5, 83.4, 82.4, 65.4, 48.6, 40.6, 37.5, 37.3, 30.3, 21.3 ppm; IR(neat): v 3419.8, 2931.9, 2265.6, 1716.8, 1451.3, 1202.7, 1077.2, 764.1 cm⁻¹; HRMS (m/z) calcd for C₁₆H₂₀O₃: 260.14124, found260.14023.

(E)-7-Methyl-1-(2-nitrostyryl)octahydro-4a,7-epoxyisochromene (3g):

Light yellow Liquid; ¹H NMR (500 MHz, CDCl₃): δ 7.93 (d, J = 8.0 Hz, 1H), 7.64–7.49 (m, 2H), 7.43–7.35 (m, 1H), 7.06 (d, J = 15.8 Hz, 1H), 6.07 (dd, J = 15.9, 6.2 Hz, 1H), 4.04-3.96 (m, 1H), 3.88–3.64 (m, 2H), 2.08–1.91 (m, 2H), 1.90–1.78 (m, 2H), 1.73–1.54 (m, 4H), 1.52 (s, 3H), 1.28–1.20 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 133.3, 133.0, 132.7, 128.7, 128.1, 126.6, 124.4, 84.5, 81.8, 81.3, 64.7, 47.3, 40.5, 37.5, 37.2, 30.2, 29.7, 21.3 ppm; IR(neat): v 2947.8, 2862.9, 2275.5, 1738.8, 1528.4, 1372.5, 1004.7, 809.8, 745.6 cm⁻¹; HRMS (*m/z*) calcd for C₁₈H₂₁O₂N: 315.14706, found: 315.14702.

1-Isobutyloctahydro-4a,7-epoxyisochromene (3h):

Light yellow Liquid; ¹H NMR (500 MHz, CDCl₃): δ 4.52 (t, J = 5.3 Hz, 1H), 3.92 (ddd, J = 11.3, 5.8, 1.0 Hz, 1H), 3.60 (ddd, J = 12.7, 11.5, 2.9 Hz, 1H), 2.94 (td, J = 10.1, 1.9 Hz, 1H), 2.05–1.96 (m, 1H), 1.92 (dd, J = 14.6, 2.0 Hz, 1H), 1.87–1.73 (m, 1H), 1.63-1.57(m, 2H), 1.53–1.44 (m, 3H), 1.33–1.20 (m, 3H), 1.10-1.03(m, 1H), 0.89 (dd, J = 14.9, 6.0 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 81.9, 79.0, 64.6, 46.6, 42.5, 35.8, 35.0, 31.4, 30.1, 29.6, 24.3, 23.9, 21.6; IR(neat): v 2955.2, 2864.9, 1733.7, 1464.2, 1108.1, 759.3 cm ⁻¹; HRMS (*m/z*) calcd for C₁₃H₂₂O₂: 210.16198, found: 210.16189.

1-(4-Methoxyphenyl)octahydro-4a,7-epoxyisochromene (3i):

Light yellow Liquid; ¹H NMR (500 MHz, CDCl₃): δ 7.31–7.23 (m, 2H), 6.89–6.83 (m, 2H), 4.56 (t, J = 5.1 Hz, 1H), 4.07–4.01 (m, 1H), 3.90 (d, J = 10.3 Hz, 1H), 3.86-3.80 (m, 1H), 3.79 (s, 3H), 2.21–2.08 (m, 1H), 2.04–1.96 (m, 2H), 1.86–1.75 (m, 1H), 1.61–1.53 (m, 2H), 1.51–1.33 (m, 3H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 159.1, 132.4, 128.5, 113.6, 83.1, 82.0, 76.8, 65.2, 55.0, 46.9, 35.6, 34.4, 31.4, 29.8 ppm; IR(neat): v 2929.3, 2860.3, 1730.4, 1614.7, 1513.6, 1247.5, 1083.8, 815.5 cm⁻¹; HRMS (*m*/*z*) calcd for C₁₆H₂₀O₃: 260.14124, found: 260.14223.

1-(Naphthalen-1-yl) octahydro-4a,7-epoxyisochromene (3j):

White solid; ¹H NMR (500 MHz, CDCl₃): δ 8.31 (d, J = 8.5 Hz, 1H), 7.84 (d, J = 7.8 Hz, 1H), 7.79 (d, J = 8.1 Hz, 1H), 7.56–7.36 (m, 4H), 4.62 (d, J = 10.6 Hz, 1H), 4.57 (t, J = 5.2 Hz, 1H), 4.17–4.08 (m, 1H), 4.00 (ddd, J = 13.1, 11.5, 2.7 Hz, 1H), 2.50 – 2.40 (m, 1H), 2.33–2.22 (m, 1H), 2.11 (dd, J = 14.8, 1.9 Hz, 1H), 1.89–1.78 (m, 1H), 1.70–1.57 (m, 2H), 1.52–1.39 (m, 2H), 1.37–1.29 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 134.9, 134.2, 132.1, 128.7, 128.6, 125.9, 125.4, 125.2, 124.9, 124.6, 82.2, 81.2, 65.7, 45.2, 35.9, 35.0, 31.6, 30.1,

29.6; IR(neat): v 2926.6, 2857.8, 2298.1, 1641.4, 1511.2, 1215.7, 1090.4, 771.0 cm⁻¹; HRMS (m/z) calcd for C₁₉H₂₆O₂: 280.14633, found: 280.14630.

1-(4-Isopropylphenyl)octahydro-4a,7-epoxyisochromene (3k):

Light yellow Liquid; ¹H NMR (500 MHz, CDCl₃): δ 7.28-7.24 (m, 2H), 7.18 (d, *J* = 8.1 Hz, 2H), 4.56 (t, *J* = 5.0 Hz, 1H), 4.07–3.99 (m, 1H), 3.92 (d, *J* = 10.4 Hz, 1H), 3.82 (ddd, *J* = 13.1, 11.6, 2.7 Hz, 1H), 2.94–2.79 (m, 2H), 2.21–2.12 (m, 1H), 2.04–1.97 (m, 2H), 1.85–1.76 (m, 1H), 1.62–1.55 (m, 1H), 1.51-1.35 (m, 3H), 1.21 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (125 MHz, CDCl₃); δ 129.0, 128.4, 127.2, 126.2, 83.4, 82.0, 76.8, 65.2, 46.7, 35.6, 34.5, 33.6, 31.4, 29.8, 23.7 ppm ; IR(neat): v 2960.4, 2863.9, 1727.6, 1638.3, 1084.7, 764.5 cm⁻¹; HRMS (*m/z*) calcd for C₁₈H₂₄O₂: 272.17763, found: 272.17642.

(E)-1-Styryloctahydro-4a,7-epoxyisochromene (3l):

White solid; ¹H NMR (500 MHz, CDCl₃): δ 7.37 (d, *J* = 7.5 Hz, 2H), 7.30 (t, *J* = 5.7 Hz, 2H), 7.23 (t, *J* = 7.3 Hz, 1H), 6.60 (d, *J* = 16.0 Hz, 1H), 6.09 (dd, *J* = 16.0, 6.6 Hz, 1H), 4.57 (t, *J* = 5.2 Hz, 1H), 4.02 (dd, *J* = 11.4, 5.8 Hz, 1H), 3.80–3.71 (m, 1H), 3.60 (dd, *J* = 10.1, 6.6 Hz, 1H), 2.09 (ddd, *J* = 19.9, 13.8, 6.5 Hz, 1H), 1.98 (dd, *J* = 14.7, 2.2 Hz, 1H), 1.87–1.71 (m, 2H), 1.64–1.47 (m, 4H), 1.47-1.40 (m, 1H. ¹³C NMR (125 MHz, CDCl₃): δ 136.7, 131.5, 128.4, 127.7, 127.6, 126.4, 81.7, 81.7, 77.1, 64.7, 45.9, 35.7, 34.6, 31.6, 29.9 ppm; IR(neat): v 2929.2, 2860.9, 2271.1, 1728.7, 1645.9, 1454.7, 1100.1, 975.1, 747.7 cm⁻¹; HRMS (*m*/*z*) calcd for C₁₇H₂₀O₂: 256.14633, found: 256.14630.

1-(2-Bromophenyl)octahydro-4a,7-epoxyisochromene (3m):

Light yellow Liquid; ¹H NMR (500 MHz, CDCl₃): δ 7.55 (dd, J = 8.0, 1.1 Hz, 1H), 7.44 (dd, J = 7.8, 1.6 Hz, 1H), 7.34–7.29 (m, 1H), 7.14 (td, J = 7.9, 1.7 Hz, 1H), 4.59 (t, J = 5.2 Hz, 1H), 4.51 (d, J = 10.6 Hz, 1H), 4.07–4.00 (m, 1H), 3.88 (ddd, J = 12.9, 11.5, 2.8 Hz, 1H), 2.20–2.08 (m, 2H), 2.03 (dd, J = 14.7, 2.1 Hz, 1H), 1.88–1.78 (m, 1H), 1.64–1.55 (m, 2H), 1.54–1.44 (m, 2H), 1.44–1.36 (m, 1H) ppm; ¹³C NMR (125 MHz, CDCl₃): δ 139.4, 132.9, 129.3, 129.1, 127.6, 124.9, 82.1, 81.0, 77.1, 65.6, 46.8, 35.8, 33.5, 31.7, 29.9 ppm; IR(neat): v 2925.5, 2860.5, 2361.9, 1708.1, 1611.9, 1465.4, 1204.5, 1076.9, 989.4, 753.4 cm⁻¹; HRMS (m/z) calcd for C₁₅H₁₇BrO₂: 308.04119, found: 308.04110.

1-Benzyloctahydro-4a,7-epoxyisochromene (3n):

Light yellow Liquid; ¹H NMR (500 MHz, CDCl₃): δ 7.31–7.25 (m, 2H), 7.24–7.17 (m, 3H), 4.52 (t, J = 5.2 Hz, 1H), 3.93–3.85 (m, 1H), 3.56 (ddd, J = 12.9, 11.5, 2.8 Hz, 1H), 3.24–3.17 (m, 1H), 2.73 (dd, J = 14.4, 3.2 Hz, 1H), 2.61 (dd, J = 14.4, 8.5 Hz, 1H), 2.06–1.96 (m, 1H), 1.90 (dd, J = 14.7, 1.8 Hz, 1H), 1.83–1.73 (m, 1H), 1.67–1.56 (m, 2H), 1.55–1.43 (m, 3H), 1.34–1.27 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 139.0, 129.2, 128.1, 126.0, 81.9, 81.9, 77.0, 64.7, 46.0, 39.7, 35.8, 35.3, 31.4, 30.0; IR(neat): v 2926.1, 2864.8, 1738.5, 1474.6, 1106.3, 757.8 cm⁻¹; HRMS (*m/z*) calcd for C₁₆H₂₀O₂: 244.14633, found: 244.14629.

1-((S)-4-((4-methoxybenzyl)oxy)pentyl)octahydro-4a,7-epoxyisochromene (3o):

Light yellow Liquid; ¹H NMR (500 MHz, CDCl₃): δ 7.28-7.24 (m, 2H), 6.86(d, *J* = 8.6 Hz, 2H), 4.53-4.46 (m, 2H), 4.38 (d, *J* = 11.4 Hz, 1H), 3.95-3.89 (m, 1H), 3.80 (s, 3H), 3.64-3.57 (m, 1H), 3.52-3.44 (m,1H), 2.90-2.85 (m, 1H), 2.09-1.85 (m,2H), 1.81–1.74 (m, 1H), 1.62–1.49 (m, 6H), 1.47-1.22 (m, 6H), 1.17 (d, *J* = 1.5,4.7 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 158.9, 131.2, 129.1, 113.6, 81.9, 80.7, 74.4, 69.8, 69.6, 55.2, 46.3, 36.5, 35.8, 35.1, 33.2, 31.4, 30.1, 29.6, 21.7, 19.5; IR(neat): v 2919.5, 2856.4, 1741.6, 1450.9, 750.8 cm⁻¹; HRMS (*m/z*) calcd for C₂₂H₃₂O₄:360.4870, found: 360.4859.

1-((S)-4-((4-methoxybenzyl)oxy)pentyl)octahydro-4a,7-epoxyisochromene (3o'):

Light yellow Liquid ¹H NMR (500 MHz, CDCl₃): δ 7.28-7.24 (m, 2H), 6.86(d, J = 8.2 Hz, 2H), 4.53-4.46 (m, 2H), 4.38 (d, J = 11.4 Hz, 1H), 3.94-3.89 (m,1H), 3.80 (s, 3H), 3.63-3.57 (m,1H), 3.51-3.45 (m,1H), 2.91-2.85 (m, 1H), 2.05-1.96(m,1H),1.94-1.88 (m,1H) 1.81-1.73 (m, 1H), 1.62-1.48 (m, 6H), 1.46-1.27 (m, 6H), 1.17 (d, J = 1.5,4.5 Hz, 3H); IR(neat): v 2927.6, 2869.5, 1725.4, 1439.4, 769.8, cm⁻¹; HRMS (*m*/*z*) calcd for C₂₂H₃₂O₄:360.4870, found: 360.4855.

(3) X-Ray crystallography

X-ray data for the compounds were collected at room temperature using a Bruker Smart Apex CCD diffractometer with graphite monochromated MoK α radiation (λ =0.71073Å) with ω -scan method [1]. Preliminary lattice parameters and orientation matrices were obtained from four sets of frames.

Integration and scaling of intensity data were accomplished using SAINT program [1]. The structure was solved by direct methods using SHELXS [2] and refinement was carried out by full-matrix least-squares technique using SHELXL [2]. Anisotropic displacement parameters were included for all non-hydrogen atoms. All H atoms were positioned geometrically and treated as riding on their parent C atoms [C-H = 0.93-0.98 Å and $U_{iso}(H) = 1.2U_{eq}(C)$]. Compound shows a meaningless Flack parameter (Flack & Bernardinelli, 2000) value of -0.5(5). This is due to the molecular structure having light atoms (<Si) with no significant anomalous scattering effects. In this case, the Flack parameter is indeterminate with Mo radiation and hence the absolute structure cannot be determined. However, the absolute configuration of the procured material was known in advance.

Crystal data for **3j**: $C_{19}H_{20}O_2$, M = 280.35, $0.18 \times 0.16 \times 0.07 \text{ mm}^3$, orthorhombic, space group $Pna2_1$ (No. 33), a = 8.6637(7), b = 15.5478(12), c = 11.0472(9) Å, V = 1488.1(2) Å³, Z = 4, $D_c = 1.251 \text{ g/cm}^3$, $F_{000} = 600$, MoK α radiation, $\mathbb{P} \lambda = 0.71073$ Å, T = 294(2)K, $2\theta_{max} = 50.0^\circ$, 13621 reflections collected, 2626 unique ($R_{int} = 0.0304$). Final *GooF* = 1.269, R1 = 0.0489, wR2 = 0.1084, R indices based on 2542 reflections with I >2 σ (I) (refinement on F^2), 190 parameters, 1 restraint. $\mu = 0.080 \text{ mm}^{-1}$. Absolute structure parameter = -0.5(5) (Flack & Bernardinelli, 2000). CCDC 1048635 contains supplementary Crystallographic data for the structure. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html [or from the Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(0) 1223 336 033; email: deposit@ccdc.cam.ac.uk].

- 1. Bruker (2001). SAINT (Version 6.28a) & SMART (Version 5.625). Bruker AXS Inc., Madison, Wisconsin, USA.
- 2. Sheldrick G. M. (2015) Acta Crystallogr C71: 3-8.
- 3. Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.

Figure Caption

Fig.1. A view of **3***j*, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented by circles of arbitrary radii.

(4) 2D-NOESY and DQCOSY Spectra of product 3a

2D DQCOSY (Double Quantum coherence spectroscopy) spectrum of compound 3a

(500 MHz NMR spectrometer)

2D NOESY (Nuclear Overhauser effect spectroscopy) spectrum of compound 3a (500 MHz NMR spectrometer).

(5) Copies of ¹H and ¹³C NMR spectra of products

¹H NMR (500 MHz, CDCl₃) spectrum of compound 3a

¹³C NMR (125 MHz, CDCl₃) spectrum of compound 3a

F¹⁹- NMR (470 MHz, CDCl₃) spectrum of compound 3a

¹H NMR (500 MHz, CDCl₃) spectrum of compound 3b

¹³C NMR (125 MHz, CDCl₃) spectrum of compound 3b

¹H NMR (500 MHz, CDCl₃) spectrum of compound 3c

¹³C NMR (125 MHz, CDCl₃) spectrum of compound 3c

¹H NMR (500 MHz, CDCl₃) spectrum of compound 3d

¹³C NMR (125 MHz, CDCl₃) spectrum of compound 3d

¹H NMR (500 MHz, CDCl₃) spectrum of compound 3e

¹³C NMR (125 MHz, CDCl₃) spectrum of compound 3e

¹H NMR (500 MHz, CDCl₃) spectrum of compound 3f

¹³C NMR (125 MHz, CDCl₃) spectrum of compound 3f

¹H NMR (500 MHz, CDCl₃) spectrum of compound 3g

¹³C NMR (125 MHz, CDCl₃) spectrum of compound 3g

¹H NMR (500 MHz, CDCl₃) spectrum of compound 3h

¹³C NMR (125 MHz, CDCl₃) spectrum of compound 3h

¹H NMR (500 MHz, CDCl₃) spectrum of compound 3i

¹³C NMR (125 MHz, CDCl₃) spectrum of compound 3i

¹H NMR (500 MHz, CDCl₃) spectrum of compound 3j

¹³C NMR (125 MHz, CDCl₃) spectrum of compound 3j

¹H NMR (500 MHz, CDCl₃) spectrum of compound 3k

¹³C NMR (125 MHz, CDCl₃) spectrum of compound 3k

¹H NMR (500 MHz, CDCl₃) spectrum of compound 31

¹³C NMR (125 MHz, CDCl₃) spectrum of compound 31

¹H NMR (500 MHz, CDCl₃) spectrum of compound 3m

¹³C NMR (125 MHz, CDCl₃) spectrum of compound 3m

¹H NMR (500 MHz, CDCl₃) spectrum of compound 3n

¹³C NMR (125 MHz, CDCl₃) spectrum of compound 3n

¹H NMR (500 MHz, CDCl₃) spectrum of compound 30

¹³C NMR (125 MHz, CDCl₃) spectrum of compound 30

¹H NMR (500 MHz, CDCl₃) spectrum of compound 30

¹³C NMR (125 MHz, CDCl₃) spectrum of compound 1a

¹H NMR (500 MHz, CDCl₃) spectrum of compound 1b

¹³C NMR (125 MHz, CDCl₃) spectrum of compound 1b

