Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Galacto configured *N*-aminoaziridines: a new type of irreversible inhibitors of β-galactosidases

Anna Alcaide,^a Ana Trapero,^a Yolanda Pérez^b and Amadeu Llebaria^{*a}

^aMedicinal Chemistry Laboratory (MedChemLab), Departament de Química Biomèdica, Institut de Química Avançada de Catalunya (IQAC–CSIC), Jordi Girona 18-26, Barcelona, 08034, Spain. ^bNMRUnit, Institut de Química Avançada de Catalunya (IQAC–CSIC), Jordi Girona 18-26, Barcelona, 08034, Spain. amadeu.llebaria@iqac.csic.es

Table of contents

Synthesis of galacto-configured aziridine derivatives (Scheme S1)					
Determination of purity of the synthesized compounds by HPLC	. S2				
Materials and methods	S2				
Biological Assays (Figure S1)	S4				
Spectroscopic data	. S5				
HPLC chromatograms	. S36				

Synthesis of galacto-configured aziridine derivatives

Scheme S1.Synthesis of olefin 2 from commercial D-xylose.

Determination of purity of the synthesized compounds by HPLC

Materials and methods

To quantify the purity of the compounds assayed, different methods have been developed by Adrián Santos and Lourdes Muñozfrom the Service of Synthesis of High Added Value Molecules (SIMChem), which belongs to the Institute of Advanced Chemistry of Catalonia (IQAC) and the Spanish National Research Council (CSIC). However, the fast elution of the final compounds **1a** and **1b** due to their high polarity did not let us to detect the peaks corresponding to these products at higher retention times after a few attempts with different methods.

<u>Solvents</u>: Different solvents were employed in sample preparation as well as mobile phases in chromatographic analysis.

- Milli-Q water
- Acetonitrile gradient grade for HPLC 99.99%, Fischer Chemical
- Formic acid 98%, Fluka

<u>Sample preparation</u>: Purity of compounds has been determined. Samples were diluted in milli-Q water at 1mg/mL. An analytical balance (GR-300, from AND) was used to weight samples.

HPLC analysis

Liquid chromatography for the separation of impurities and final products was performed by means of an HPLC-DAD-ELSD Alliance from Waters (Barcelona, Spain). This chromatograph is designed as a Separation Module equipped with pump and autosampler integrated model number 2695 coupled to two detectors working in parallel, a PDA 2996 from Waters and a light scattering ELS-1000 from polymer laboratories.

Chromatographic conditions for the quantification of purity by Method A

Guard column	PhenomenexSecurityGuard LC-18 ($4 \times 3 \text{ mm } \emptyset$)								
Analytical column	ZORBAX	Eclipse	Plus	C18	4.6x75mm;	3.5µm	(S.N.	USUXD01964;	
	Agilent)								
Flow	1 mL/min								
	ELS DETE	CTOR							
	Gas flow			1	.5 L/min				
	Nebulizatio	on temper	ature	8	0 °C				
	Evaporatio	n tempera	ature	9	0°C				

TABLE S1. Gradient used to determine the purity of compounds by method A.

Time (min)	Water + 0.2% (v/v) formic acid (%)	MeCN + 0.2% (v/v) formic acid (%)
0.01	100	0
2.00	100	0
6.00	85	15
8.00	50	50
11.00	100	0
15.00	100	0

HPLC-MS analysis were run on a Ultimate 3000SD (Thermo Scientific Dionex) coupled to a LTQ XL ESIion trap. Mass spectra were recorded in negative and positive ion mode (m/z 50-1500)

Analytical Column:	ZORBAX Eclipse Plus C18 4.6x150mm; 3.5um (S.N. USUXC04483
Flow:	0,9 mL/min
Temperature:	30°C

TABLE S2. Gradient used for HPLC-MS analysis.

Time (min)	Water (%)	MeCN (%)
0.01	95.0	5.0
2.00	95.0	5.0
8.00	0.0	100.0
10.00	0.0	100.0
11.00	95.0	5.0
15.00	95.0	5.0

Biological Assays

Figure S1. Progress curves for the irreversible inhibition of *Aspergillusoryzae* (A) and *Escherichia coli* (B) β -Galactosidases for compounds **1a** and **1b**.

002 022 - 100 022 - 100 020 - 100 000 - 100 000 000 - 100 0000 00	50 50 50 50 50 50 50 50 50 50 50 50 50 5	90000000000000000000000000000000000000	88 4	138 8 138 8 138 8 138 139 139 139 139 139 139 139 139 139 139	43	600004	848 848
		0,00,00,00,00,00,00,00,00,00,00,00,00,0	0.0	440 00	0.0		000
000000	アアアア	4444444444	44	ຕ່ຕ່ຕ່ ຕ່ຕ່	NN	00000	
≤ 1				\lor \lor	\vdash		\checkmark

S5

S6

NOESY spectrum of 3-((1*R*,2*S*,3*S*,4*S*,5*R*,6*R*)-2,3-bis(benzyloxy)-4-hydroxy-5-(hydroxymethyl)-7-azabicyclo[4.1.0] heptan-7-yl)-2-ethylquinazolin-4(3*H*)-one (**4**, 500 MHz, CDCl₃)

4.85 4.85 4.69 4.67 4.43 4.41 4.41 4.39 $\overbrace{\begin{array}{c}2.27\\2.26\\2.25\end{array}}$ - 4.08 3.51 3.51 3.49 3.49 3.11 - 35 1 Ν HO ٩N - 30 HO• Ô . ЮВп BnO - 25 - 20 - 15 - 10 - 5 hannow land with the second of t distants which we have the second of the second -5 --10 - -15 - -20 3.0 2.5 f1 (ppm) 6.0 5.5 5.0 4.5 4.0 3.5 2.0 1.5 1.0 0.5 0.0 -0.5

Selective band center: 4.17 (ppm); width: 21.6 (Hz)

¹H-NMR spectrum of (1*R*,2*R*,3*S*,4*S*,5*S*,6*R*)-7-amino-4,5-bis(benzyloxy)-2-(hydroxymethyl)-7-azabicyclo[4.1.0] heptan-3-ol (5, 400 MHz, CDCl₃)

2280304455	.77 .75 .75 .64 .61	.03 .94 .52	27 26 25 25	116 117 117 117 117 117 117 117 117 117
ファット・ファット・ファット	44444	4400 O	m m m m m	

¹³C-NMR spectrum of (1*R*,2*R*,3*S*,4*S*,5*S*,6*R*)-7-amino-4,5-bis(benzyloxy)-2-(hydroxymethyl)-7-azabicyclo[4.1.0] heptan-3-ol (**5**, 101 MHz, CDCl₃)

8 4	0044000 147000 3000	en e	2	ŝ	~		റെ
138.	128. 128. 128. 128.	82.8	77.6:	67.5	62.4	4 4 5 5 2 5	39.65
\vdash							

gHSQC (1R,2R,3S,4S,5S,6R)-7-amino-4,5-bis(benzyloxy)-2-(hydroxymethyl)-7-azabicyclo[4.1.0] heptan-3-ol (5, 400 MHz, CDCl₃)

¹H-NMR spectrum of (1*R*,2*R*,3*S*,4*S*,5*S*,6*R*)-4,5-bis(benzyloxy)-2-(hydroxymethyl)-7-(propan-2-ylideneamino)-7-aza bicyclo[4.1.0]heptan-3-ol (**8**, 400 MHz, CDCl₃)

¹³C-NMR spectrum of (1*R*,2*R*,3*S*,4*S*,5*S*,6*R*)-4,5-bis(benzyloxy)-2-(hydroxymethyl)-7-(propan-2-ylideneamino)-7-aza bicyclo[4.1.0]heptan-3-ol (**8**, 101 MHz, CDCl₃)

	1 1	1 1		· · ·		1 1	1 1		'			· ·	·	'	' '	1	(I		
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
									f1	l (ppm)									

gHSQC spectrum of (1R,2R,3S,4S,5S,6R)-4,5-bis(benzyloxy)-2-(hydroxymethyl)-7-(propan-2-ylideneamino)-7-aza bicyclo[4.1.0]heptan-3-ol (8, 400 MHz, CDCl₃)

¹H-NMR spectrum of (1R, 2S, 3S, 4S, 5R, 6R)-5-(hydroxymethyl)-7-azabicyclo[4.1.0]heptane-2,3,4-triol (**1a**, 400 MHz, CD₃OD)

gDQCOSY (1R,2S,3S,4S,5R,6R)-5-(hydroxymethyl)-7-azabicyclo[4.1.0]heptane-2,3,4-triol (1a, 400 MHz, CD₃OD)

gHSQC (1R,2S,3S,4S,5R,6R)-5-(hydroxymethyl)-7-azabicyclo[4.1.0]heptane-2,3,4-triol (1a, 400 MHz, CD₃OD)

¹H-NMR spectrum of (1*R*,2*S*,3*S*,4*S*,5*R*,6*R*)-5-(hydroxymethyl)-7-(propan-2-ylideneamino)-7-azabicyclo[4.1.0]heptane-2,3,4-triol (**1b**, 400 MHz, D₂O)

¹³C-NMR spectrum of (1*R*,2*S*,3*S*,4*S*,5*R*,6*R*)-5-(hydroxymethyl)-7-(propan-2-ylideneamino)-7-azabicyclo[4.1.0]heptane-2,3,4-triol (**1b**, 101 MHz, D₂O)

S29

HSQC (1*R*,2*S*,3*S*,4*S*,5*R*,6*R*)-5-(hydroxymethyl)-7-(propan-2-ylideneamino)-7-azabicyclo[4.1.0]heptane-2,3,4-triol (**1b**, 500 MHz, D₂O)

¹H-NMR spectrum of (1*R*,2*S*,3*S*,4*S*,5*R*,6*R*)-5-(acetoxymethyl)-7-acetyl-7-azabicyclo[4.1.0]heptane-2,3,4-triyl triacetate (7, 400 MHz, CDCl₃)

gDQCOSY spectrum of (1R,2S,3S,4S,5R,6R)-5-(acetoxymethyl)-7-acetyl-7-azabicyclo[4.1.0]heptane-2,3,4-triyl triacetate (7, 400 MHz, CDCl₃)

gHSQC spectrum of (1R,2S,3S,4S,5R,6R)-5-(acetoxymethyl)-7-acetyl-7-azabicyclo[4.1.0]heptane-2,3,4-triyl triacetate (7, 400 MHz, CDCl₃)

HPLC chromatograms

