Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Divergent Synthesis of 4,6-Diarylated Pyridin-2(1*H*)-ones from Chalcones: Novel Access to 2,4,6-Triaryl Pyridines

Rajni Khajuria,^a Prakash Kannaboina,^{b,c} Kamal K. Kapoor,^{a,*} Annah Gupta,^a Gaurav Raina,^{b,c} Amanpreet Kaur Jassal,^d Love Karan Rana,^d Maninder S. Hundal^d and Parthasarathi Das^{b,c*}

^a Department of Chemistry, University of Jammu, Jammu 180006, India

^bAcademy of Scientific and Innovative Research (AcSIR), India

^cMedicinal Chemistry Division, Indian Institute of Integrative Medicine(CSIR), Jammu 180001, India

^d Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India

E-mail: k2kapoor@yahoo.com; partha@iiim.ac.in

Table of contents

S. No.	Contents	Page No.
1.	X-ray crystal structures	S2-3
2.	X-ray crystallographic data and structure refinement	S4-5
3.	¹ H and ¹³ C NMR spectra	S6-45

1. X-ray crystal structures

Fig 1. Showing ORTEP diagrams of the molecular structures (50 % probability) and the labeling scheme used.

2e

Figure 2. Showing H-bonded dimers in structures of 2a, 2c, 2e and 2j.

Figure 3. (a) Showing ORTEP diagram of the molecular structure (20 % probability) and the labeling scheme used, (b) Showing H-bonded dimer in the structure of **4**.

2. X-ray crystallographic data and structure refinement

 Table 1.
 Showing dihedral angles and the H-bonding parameters in various crystal structures.

Compound and	Dihedral angles	Dihedral angles (°)	H-bonding parameters	
substitution at aryl	between various		between N1-H1O1	
rings at 4 and 6	rings*		(Å,°)	
positions of pyridin-	_			
2(1 <i>H</i>)-one				
2a	1 & 2	37.30(7)	N1O1 2.793(3)	
-H	2 & 3	51.14(7)	H1O1 1.91	
-H	1 & 3	48.07(7)	∠N1-H1O1 171	
			Symm -x,-y+1,-z+1	
2c	1 & 2	36.98(5)	N1O1 2.823(2)	
-Cl	2 & 3	35.48(6)	H1O1 1.99	
-Н	1 & 3	33.26(6)	∠N1-H1O1 164	
			Symm -x+2,-y+2,-z+1	
2e	1 & 2	33.36(7)	N1O1 2.850(3)	
-H	2 & 3	33.98(7)	H1O1 1.98	
-OCH ₃	1 & 3	55.99(7)	∠N1-H1O1 174	
			Symm -x+1,-y,-z+2	
2j	1 & 2	15.21(13)	N1O1 2.792(3)	
-OCH ₃	2 & 3	29.87(7)	H1O1 1.94	
-Cl	1 & 3	21.28(10)	∠N1-H1O1 174	
			Symm -x+2,-y+1,-z+1	
4	1 & 2	86.73(35)	N1O1 2.932(5)	
-H	2 & 3	30.78(16)	H1AO1 2.096	
-Н	1 & 3	78.26(31)	∠N1-H1A01 171	
			Symm -x+1,-y+2,-z+1	

*The aryl rings at positions 4 and 6 are termed rings 1 and 3, respectively and pyridin-2(1H)-one is ring 2.

Table 2. Important cell and refinement parameters

Identification	2a	2c	2e	2j	7e	4
code						
Empirical	C ₁₇ H ₁₃ NO	C ₁₇ H ₁₂ CINO	C ₁₈ H ₁₅ NO ₂	C ₁₈ H ₁₄ ClNO ₂	C ₂₆ H ₂₃ N O ₃	C ₁₇ H ₁₄ N ₂ O ₃
formula						
Formula weight	247.28	281.73	277.31	311.75	397.45	294.30
Temperature	296(2) K	296(2) K	296(2) K	296(2) K	296(2) K	296(2) K
Wavelength	0.71073 Å	0.71073 Å	0.71073 Å	0.71073 Å	0.71073 Å	0.71073 Å
Crystal system	Triclinic	Triclinic	Monoclinic	Monoclinic	Monoclinic	Monoclinic
Space group	P -1	P -1	$P 2_1/c$	$P 2_1/c$	Cc	$P2_1/c$
Unit cell	a = 6.3743(7) Å,	a = 7.1491(6) Å,	a = 14.347(2) Å,	a = 15.8518(10)	a = 19.554(3) Å,	a = 15.617(8) Å,
dimensions	$\alpha = 80.064(4)^{\circ}$	$\alpha = 91.207(4)^{\circ}$	$\alpha = 90^{\circ}$	Å, α = 90°	$\alpha = 90^{\circ}$	$\alpha = 90^{\circ}$
	b = 10.3034(13)	b = 9.2336(9) Å,	b = 7.3632(11) Å,	b = 7.2952(5) Å,	b = 14.7990(17)	$b = 5.565(3) \text{ Å}, \beta$
	Å, $\beta = 72.725(5)^{\circ}$	$\beta = 97.280(3)^{\circ}$	$\beta = 92.25(7)^{\circ}$	$\beta = 106.043(3)^{\circ}$	Å, β =	$= 113.024(5)^{\circ}$
					101.157(6)°	
	c = 10.5322(12)	c = 10.4719(9) Å,	c = 13.382(2) Å,	c = 13.5752(7) Å,	c = 7.5795(9) Å,	c = 18.620(10) Å,
	Å, γ = 76.743(4)°	$\gamma = 90.918(3)^{\circ}$	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$	$\gamma = 90^{\circ}$
Volume	638.85(13) Å ³	685.42(11) Å ³	1412.6(4) Å ³	1508.73(16) Å ³	2151.9(5) Å ³	1489.3(14) Å ³
Ζ	2	2	4	4	4	4
Density	1.286 Mg/m ³	1.365 Mg/m ³	1.304 Mg/m ³	1.372 Mg/m ³	1.227 Mg/m ³	1.313 Mg/m ³

(calculated)						
Absorption coefficient	0.080 mm ⁻¹	0.272 mm ⁻¹	0.085 mm ⁻¹	0.259 mm ⁻¹	0.080 mm ⁻¹	0.092 mm ⁻¹
F(000)	260	292	584	648	840	616
Crystal size	0.12 x 0.10 x 0.08	0.11 x 0.08 x 0.05	0.12 x 0.10 x 0.06	0.14 x 0.11 x 0.08	0.14 x 0.11 x 0.08	0.13 x 0.09 x 0.07
	mm ³					
Theta range for	2.04 to 27.64°.	1.96 to 25.87°.	1.42 to 28.23°.	2.67 to 26.56°.	1.74 to 28.59°.	1.42 to 26.38°.
data collection						
Index ranges	-7<=h<=8, -	-4<=h<=8, -	-12<=h<=18, -	-19<=h<=18, -	-26<=h<=26, -	-19<=h<=16, -
	13<=k<=13,	11<=k<=11,	5<=k<=9,	9<=k<=9,	19<=k<=19,	6<=k<=6, -
	-9<=l<=13	-12<=l<=12	-7<=l<=17	-16<=l<=16	-10<=l<=10	21<=l<=23
Reflections	4212	9560	3678	11515	8914	11286
collected						
Independent	2645 [R(int) =	2614 [R(int) =	2767 [R(int) =	3082 [R(int) =	5151 [R(int) =	2972 [R(int) =
reflections	0.0272]	0.0252]	0.0183]	0.0243]	0.0336]	0.1068]
Completeness to	88.7 %	98.3 %	79.2 %	98.3 %	99.3 %	97.8 %
theta = 27.64°						
Absorption	Semi-empirical	Semi-empirical	Semi-empirical	Semi-empirical	Semi-empirical	Semi-empirical
correction	from equivalents					
Max. and min.	0.7456 and	0.7453 and	0.7457 and	0.7454 and	0.7457 and	0.7453 and
transmission	0.5524	0.7017	0.6057	0.6520	0.6446	0.5859
Refinement	Full-matrix least-					
method	squares on F ²					
Data / restraints /	2645 / 1 / 175	2614 / 1 / 184	2767 / 1 / 194	3082 / 1 / 203	5151 / 2 / 274	2972 / 1 / 202
parameters						
Goodness-of-fit	0.854	1.073	0.825	1.036	0.941	0.908
on F ²						
Final R indices	R1 = 0.0524,	R1 = 0.0387,	R1 = 0.0526,	R1 = 0.0535,	R1 = 0.0502,	R1 = 0.0891,
[I>2sigma(I)]	wR2 = 0.1378	wR2 = 0.0991	wR2 = 0.1358	wR2 = 0.1443	wR2 = 0.0984	wR2 = 0.2575
R indices (all	R1 = 0.0895,	R1 = 0.0546,	R1 = 0.1017,	R1 = 0.0795,	R1 = 0.1024,	R1 = 0.1994,
data)	wR2 = 0.1706	wR2 = 0.1106	wR2 = 0.1724	wR2 = 0.1642	wR2 = 0.1253	wR2 = 0.3334
Largest diff. peak	0.140 and -0.217	0.183 and -0.196	0.154 and -0.234	0.298 and -0.317	0.131 and -0.137	0.362 and -0.405
and hole	e.Å ⁻³					
CCDC number	1013400	1013398	1013402	1013399	1013401	1029360

3. ¹H and ¹³C NMR spectra

¹H NMR spectrum of ethyl 2-nitro-5-oxo-3,5-diphenylpentanoate (3)

¹H NMR spectrum of 3,4-dihydro-3-nitro-4,6-diphenylpyridin-2(1*H*)-one (4)

¹³C NMR spectrum of 3,4-dihydro-3-nitro-4,6-diphenylpyridin-2(1*H*)-one (4)

¹H NMR spectrum of 4,6-biphenylpyridin-2(1*H*)-one (2a)

f1 (ppm)

¹H NMR spectrum of 4-(4-chlorophenyl)-6-phenylpyridin-2(1*H*)-one (2c)

¹H NMR spectrum of 4-(3-nitrophenyl)-6-phenylpyridin-2(1*H*)-one (2d)

S11

S12

¹H NMR spectrum of 6-(4-chlorophenyl)-4-phenylpyridin-2(1*H*)-one (2f)

¹H NMR spectrum of 6-(4-methoxyphenyl)-4-(4-methylphenyl)pyridin-2(1*H*)-one (2g)

¹³C NMR spectrum of 6-(4-methoxyphenyl)-4-(4-methylphenyl)pyridin-2(1*H*)-one (2g)

¹H NMR spectrum of 4,6-bis(4-methoxyphenyl)pyridin-2(1*H*)-one (2h)

¹H NMR spectrum of 6-(4-chlorophenyl)-4-(4-methyl)pyridin-2(1*H*)-one (2i)

¹³C NMR spectrum of 6-(4-chlorophenyl)-4-(4-methyl)pyridin-2(1*H*)-one (2i)

¹H NMR spectrum of 6-(4-chlorophenyl)-4-(4-methoxy)pyridin-2(1*H*)-one (2j)

¹³C NMR spectrum of 6-(4-chlorophenyl)-4-(4-methoxy)pyridin-2(1*H*)-one (2j)

¹³C NMR spectrum of 4-(4-bromophenyl)-6-(4-chlorophenyl)pyridin-2(1*H*)-one (2k)

¹³C NMR spectrum of 6-(4-methoxyphenyl)-4-(4-nitrophenyl)pyridin-2(1*H*)-one (2l)

¹³C NMR spectrum of 6-phenyl-4-(3,4,5-trimethoxyphenyl)pyridin-2(1*H*)-one (2n)

¹H NMR spectrum of 6-(4-methoxyphenyl)-4-(3,4,5-trimethoxyphenyl)pyridin-2(1*H*)-one (20)

¹³C NMR spectrum of 6-(4-methoxyphenyl)-4-(3,4,5-trimethoxyphenyl)pyridin-2(1*H*)-one (20)

¹H NMR spectrum of 6-(benzo[*d*][1,3]dioxol-5-yl)-4-phenylpyridin-2(1*H*)-one (2p)

¹³C NMR spectrum of 6-(benzo[d][1,3]dioxol-5-yl)-4-phenylpyridin-2(1*H*)-one (2p)

¹H NMR spectrum of 4-phenyl-6-(2-pyridyl)pyridin-2(1*H*)-one (2q)

¹H NMR spectrum of 4-(furan-2-yl)-6-phenylpyridin-2(1*H*)-one (2r)

¹³C NMR spectrum of 4-(furan-2-yl)-6-phenylpyridin-2(1*H*)-one (2r)

¹H NMR spectrum of 6-phenyl-4-(thiophen-2-yl)-pyridin-2(1*H*)-one (2s)

¹³C NMR spectrum of 6-phenyl-4-(thiophen-2-yl)-pyridin-2(1*H*)-one (2s)

¹³C NMR spectrum of 4-(furan-2-yl)-6-(thiophen-2-yl)pyridin-2(1*H*)-one (2t)

¹³C NMR spectrum of 4,6-di(thiophen-2-yl)pyridin-2(1*H*)-one (2u)

100 90 f1 (ppm)

¹³C NMR spectrum of 4,6-diphenylpyridin-2-yl4-methylbenzenesulfonate (6a)

¹³C NMR spectrum of 6-(4-chlorophenyl)-4-phenylpyridin-2-yl 4-methylbenzenesulfonate (6b)

¹H NMR spectrum of 6-(4-methoxyphenyl)-4-(4-methylphenyl)pyridin-2-yl 4-methylbenzenesulfonate (6c)

¹³C NMR spectrum of 6-(4-methoxyphenyl)-4-(4-methylphenyl)pyridin-2-yl 4-methylbenzenesulfonate (6c)

¹H NMR spectrum of 6-(benzo[d][1,3]dioxol-5-yl)-4-phenylpyridin-2-yl 4-methylbenzenesulfonate (6d)

--6.02

¹³C NMR spectrum of 6-(benzo[d][1,3]dioxol-5-yl)-4-phenylpyridin-2-yl 4-methylbenzenesulfonate (6d)

¹H NMR spectrum of 6-phenyl-4-(3,4,5-trimethoxyphenyl)pyridin-2-yl 4-methylbenzenesulfonate (6e)

¹³C NMR spectrum of 6-phenyl-4-(3,4,5-trimethoxyphenyl)pyridin-2-yl 4-methylbenzenesulfonate (6e)

¹H NMR spectrum of 6-(4-methoxyphenyl)-4-(3,4,5-trimethoxyphenyl)pyridin-2-yl 4-methylbenzene sulfonate (6f)

-2.33

¹³C NMR spectrum of 6-(4-methoxyphenyl)-4-(3,4,5-trimethoxyphenyl)pyridin-2-yl 4-methylbenzene sulfonate (6f)

¹H NMR spectrum of 4-(furan-2-yl)-6-phenylpyridin-2-yl 4-methylbenzenesulfonate (6g)

¹³C NMR spectrum of 4-(furan-2-yl)-6-phenylpyridin-2-yl 4-methylbenzenesulfonate (6g)

¹H NMR spectrum of 4,6-di(thiophen-2-yl)pyridin-2-yl 4-methylbenzenesulfhonate (6h)

¹³C NMR spectrum of 4,6-di(thiophen-2-yl)pyridin-2-yl 4-methylbenzenesulfhonate (6h)

¹H NMR spectrum of 2,4,6-triphenylpyridine (7a)

¹³C NMR spectrum of 2,4,6-triphenylpyridine (7a)

¹H NMR spectrum of 2-(4-chlorophenyl)-4-phenyl-6-(p-tolyl)pyridine (7b)

¹³C NMR spectrum of 2-(4-chlorophenyl)-4-phenyl-6-(p-tolyl)pyridine (7b)

¹H NMR spectrum of 2-(3-methoxyphenyl)-6-(4-methoxyphenyl)-4-(4-methyl phenyl)pyridine (7c)

¹H NMR spectrum of 2,6-bis(benzo[d][1,3]dioxol-5-yl)-4-phenylpyridine (7d)

¹³C NMR spectrum of 2,6-bis(benzo[d][1,3]dioxol-5-yl)-4-phenylpyridine (7d)

¹H NMR spectrum of 2,6-diphenyl-4-(3,4,5-trimethoxyphenyl)pyridine (7e)

¹³C NMR spectrum of 2,6-diphenyl-4-(3,4,5-trimethoxyphenyl)pyridine (7e)

¹H NMR spectrum of 2-(benzo[d][1,3]dioxol-5-yl)-6-phenyl-4-(3,4,5-trimethoxy phenyl)pyridine (7f)

¹H NMR spectrum of 2,6-bis(4-methoxyphenyl)-4-(3,4,5-trimethoxyphenyl)pyridine (7g)

C NMR spectrum 2,6-bis(4-methoxyphenyl)-4-(3,4,5-trimethoxyphenyl)pyridine (7g)

¹H NMR spectrum of 4-(4-(furan-2-yl)-6-phenylpyridin-2-yl)benzonitrile (7h)

¹³C NMR spectrum of 4-(4-(furan-2-yl)-6-phenylpyridin-2-yl)benzonitrile(7h)

¹H NMR spectrum of 4,6-di(thiophen-2-yl)-2,2'-bipyridine (7i)

¹³C NMR spectrum of 4,6-di(thiophen-2-yl)-2,2'-bipyridine (7i)

