Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is © The Royal Society of Chemistry 2015

SUPPORTING INFORMATION

Studies on the Synthesis, Stability and Conformation of 2-(Arylsulfonyl)oxetane Fragments

Kate F. Morgan,^a lan A. Hollingsworth^b and James A. Bull^{*a}

- ^a Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ, UK.
 Tel: +44 (0)20 7594 5811. E-mail: j.bull@imperial.ac.uk.
- ^b AstraZeneca Mereside, Alderley Park, Cheshire, SK10 4TG, UK.

Table of contents	S1
General Experimental Conditions	S2
Synthesis of 2-(2-methylbenzenesulfonyl)oxetane 1e	S3
Synthesis of 2-[(2-chlorophenyl)sulfonyl] oxetane 1f	S5
Synthesis of 2-(3-chlorobenzenesulfonyl)oxetane 1g	S7
Synthesis of 2-[(4-fluorophenyl)sulfonyl] oxetane 1h	S9
Synthesis of 2-(4-bromobenzenesulfonyl) oxetane 1i	S11
Synthesis of 2-[4-(trifluoromethyl)benzenesulfonyl]oxetane 1j	S13
Synthesis of 2-((4-methoxyphenyl)sulfonyl)oxetane 1k	S15
Preparation of oxetanes 17 and 18 by Suzuki cross-coupling of oxetane 1i	S17
Preparation of oxetanes 19 and 20 by Suzuki cross-coupling of oxetanes 1g and 1f	S18
Rearrangement of alkylated oxetane 8 when stored at room temperature	S19
Studies into the stability of 2-sulfonyl oxetanes 1a-d, 1h, 1k, 13 and 16	S20
Conformational Analysis of 2-(phenylsulfonyl)oxetane 1a	S22
Conformational Analysis of 2-(oxetan-2-ylsulfonyl)pyridine 1d.	S23
Conformational Analysis of 2-(2-methylbenzenesulfonyl)oxetane 1e	S25
¹ H and ¹³ C NMR spectra for novel compounds	S28-S71
References	S72

General Experimental Conditions:

All non-aqueous reactions were carried out under an inert atmosphere (argon) with oven-dried (160 °C) or flame dried glassware using standard techniques. Anhydrous solvents were obtained by filtration through drying columns (THF, Et₂O, CH₂Cl₂, PhMe) or obtained from commercial suppliers and used without further purification (DMF).

Flash column chromatography was performed using 230-400 mesh silica, with the indicated solvent system according to standard techniques. Analytical thin-layer chromatography (TLC) was performed on precoated, glass-backed silica gel plates. Visualization of the developed chromatogram was performed by UV absorbance (254 nm), aqueous potassium permanganate stain or PMA (phosphomolybdic acid).

Infrared spectra were recorded using a Perkin-Elmer spectrum 100 FT-IR Spectrometer and the absorbencies were reported in wavenumbers (cm⁻¹).

Nuclear magnetic resonance spectra were recorded on a Bruker AV 400 (400 MHz) or AV 500 (500 MHz) spectrometer. Data were reported as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, br = broad), coupling constant in Hz and assignment. Chemical shifts are reported in parts per million from tetramethylsilane with the solvent resonance as an internal standard (¹H NMR spectra: CDCl₃: δ = 7.27 ppm, (CD₃)₂CO: δ = 2.05 ppm, CD₃OD: δ = 3.31 ppm, (CD₃)₂SO: δ = 2.50 ppm. ¹³C NMR spectra: CDCl₃: δ = 77.00 ppm, (CD₃)₂CO: δ = 29.84, 206.26 ppm, CD₃OD: δ = 49.00 ppm, (CD₃)₂SO: δ = 39.52 ppm) or using chloroform with 1% tetramethylsilane as the internal standard. ¹³C NMR spectra were recorded with complete proton decoupling. ¹⁹F NMR spectra were recorded with complete proton decoupling. Chemical shifts are reported in parts per million referenced to the standard monofluorobenzene: -113.5 ppm. Assignments of ¹H and ¹³C spectra were made by the analysis of δ/J values and COSY, HSQC and HMBC experiments as appropriate.

High resolution mass spectrometry were recorded on VG Platform II, Waters Xevo G2-S, VG Autospec or Thermofisher LTQ Orbitrap XL spectrometers. Melting points are uncorrected

Reagents: For the preparation of a LiHMDS solution, hexamethyldisilazane was distilled over potassium hydroxide immediately before use. Unless otherwise stated *m*CPBA was dissolved in CH_2Cl_2 , washed with a phosphate buffer (pH 7.5) and dried (MgSO₄) then the solvent removed under reduced pressure prior to use. All commercially available organometallic solutions were titrated against salicylaldehyde phenylhydrazone.¹ All other commercially available reagents were used without further purification.

Preparation of a 0.61M solution of LiHMDS: A solution of HMDS (1.26 ml, 6.04 mmol) in THF (5.35 mL) was cooled to –78 °C for 10 min then *n*BuLi (2.39 mL, 5.49 mmol, 2.3 M in hexane) was added dropwise. Solution stirred at –78 °C for 30 min then warmed to 0 °C for 30 min prior to use.

Compound Handling/Purification/Storage: All synthetic intermediates were stored under argon at -20 °C for short periods of time. See full document for discussion of the stability of sulfonyl oxetanes.

For full experimental details and characterisation of compounds **1a-1d**, **8-12** and **13-16** see K. F. Morgan, I. A. Hollingsworth and J. A. Bull, *Chem. Commun.*, 2014, **50**, 5203–5205.

Synthesis of 2-(2-Methylbenzenesulfonyl)oxetane (1e)

1-Methyl-2-(methylsulfanyl)benzene (3e)

Potassium carbonate (3.07 g, 22.21 mmol) was added to a solution of *o*-tolyl thiol (2.4 mL, 20.2 mmol) in acetone (25 mL) followed by MeI (1.3 mL, 21.20 mmol) and the reaction stirred at rt for 18 h. The reaction was filtered through celite and the solvent removed under reduced pressure. The crude material was dissolved in diethyl ether (30 mL) and washed with 1M NaOH (3 × 20 mL). The combined aqueous layers were extracted with ether (30 mL) then the combined organics were washed with brine (20 mL), dried (Na₂SO₄), filtered and the solvent removed under reduced pressure to afford sulfide **3e** (2.66 g, 95%) as a yellow oil which was used without further purification. ¹H NMR (400 MHz, CDCl₃) δ 7.25–7.16 (3 H, m, 3 × Ar-H), 7.12–7.07 (1 H, m, Ar-H), 2.50 (3 H, s, CH₃), 2.38 (3 H, s, CH₃). The observed data (¹H) is consistent with that reported in the literature.²

1-[(Chloromethyl)sulfanyl]-2-methylbenzene (5e)

N-Chlorosuccinimide (2.83 g, 21.19 mmol) was added portionwise to a solution of sulfide **3e** (2.66 g, 19.30 mmol) in dichloroethane (31.5 mL). The reaction was stirred at rt for 17 h then filtered through a short pad of silica, eluting with dichloromethane (50 mL) and the solvent removed under reduced pressure to afford chloromethyl sulfide **5e** as a yellow oil (3.03 g, 90%). Sulfide **5e** was taken on without further purification. $R_f = 0.70$ (40% EtOAc/hexane). IR (film)/cm⁻¹ 3014, 3061, 1718, 1589, 1470, 1455, 1380, 1278, 1227, 1149, 1062, 1046, 908, 850, 739, 677. ¹H NMR (400 MHz, CDCl₃) δ 7.61–7.57 (1 H, m, Ar-H), 7.30–7.25 (3 H, m, 3 × Ar-H), 5.00 (2 H, s, SCH₂Cl), 2.46 (3 H, s, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 139.0 (Cq), 132.5 (Cq), 130.5 (2 × Ar-C), 127.9 (Ar-C), 126.8 (Ar-C), 50.3 (SCH₂Cl), 20.5 (CH₃). HRMS (EI) *m/z* Calculated for C₈H₉³⁵CIS [M]: 172.0113; Found: 172.0121 [M].

2-{[(2-Methylphenyl)sulfanyl]methoxy}ethan-1-ol (6e)

Sodium hydride (60% in mineral oil, 0.64 g, 16.00 mmol) was added to ethylene glycol (150 mL) at 0 °C and stirred for 1 h. Sodium iodide (2.40 g, 16.01 mmol) was added followed by sulfide **5e** (2.51 g, 14.54 mmol).

DMF (2 mL) was added to aid solubility. The resulting solution was stirred at 0 °C for 1 h then warmed to rt for 18 h. H₂O (100 mL) was added and the product was extracted with ethyl acetate (10 × 20 mL). The combined organic layers were dried (MgSO₄), filtered and the solvent removed under reduced pressure. Purification by flash chromatography (30% EtOAc/hexane) afforded alcohol **6e** (1.91 g, 66%) as a colourless oil. $R_f = 0.19$ (30% EtOAc/hexane). IR (film)/cm⁻¹ 3389, 3058, 2928, 1589, 1470, 1456, 1379, 1308, 1265, 1094, 1047, 1016, 888, 824, 735, 696, 668. ¹H NMR (400 MHz, CDCl₃) δ 7.57–7.54 (1 H, m, Ar-H), 7.21–7.12 (3 H, m, 3 × Ar-H), 5.05 (2 H, s, SCH₂O), 3.80–3.70 (4 H, m, OCH₂CH₂OH), 2.41 (3 H, s, CH₃), 2.19 (1 H, br m, OH). ¹³C NMR (100 MHz, CDCl₃) δ 138.1 (C_q), 134.8 (C_q), 130.1 (Ar-C), 129.8 (Ar-C), 126.7 (Ar-C), 126.6 (Ar-C), 75.5 (SCH₂O), 69.9 (OCH₂), 61.5 (OCH₂), 20.5 (CH₃). HRMS (NSI) *m/z* Calculated for C₁₀H₁₈O₂NS⁺ [M+NH₄]⁺: 216.1053; Found: 216.1054 [M+NH₄]⁺.

2-{[(2-Methylphenyl)sulfanyl]methoxy}ethyl-4-methylbenzene-1-sulfonate (S2)

Triethylamine (3.45 mL, 24.75 mmol) and trimethylamine hydrochloride (79 mg, 0.82 mmol) were added to a solution of sulfide **6e** (1.63 g, 8.22 mmol)

in toluene (30 mL) at 0 °C and stirred for 30 min. 4-Toluenesulfonyl chloride (3.14 g, 16.47 mmol)

was added portionwise. The mixture was stirred at 0 °C for 30 min then warmed to rt and stirred for a further 1 h 30 min. H₂O (75 mL) was added to the reaction and the product was extracted with EtOAc (5 × 20 mL). The combined organic layers were dried (MgSO₄), filtered and the solvent removed under reduced pressure. Purification by flash chromatography (20% EtOAc/hexane) afforded tosylate **S2** (2.65 g, 91%) as a white solid; m.p. 46–47 °C. R_f = 0.27 (20% EtOAc/hexane). IR (film)/cm⁻¹ 2919, 2875, 1596, 1468, 1424, 1358, 1310, 1278, 1175, 1122, 1088, 1016, 922, 817, 780, 758, 696, 662. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (2 H, d, *J* = 8.3 Hz, 2 × Ts-H), 7.49–7.45 (1 H, m, Ar-H), 7.32 (2 H, d, *J* = 8.2 Hz, 2 × Ts-H), 7.19–7.12 (3 H, m, 3 × Ar-H), 4.95 (2 H, s, SCH₂O), 4.22–4.18 (2 H, m, TsOCH₂), 3.83–3.79 (2 H, m, SCH₂OCH₂), 2.45 (3 H, s, CH₃), 2.37 (3 H, s, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 144.8 (Ts-C_q), 137.9 (Ar-C_q), 134.7 (Ts-C_q), 132.8 (Ar-C_q), 130.0 (Ar-C), 129.7 (3 × Ar-C), 127.8 (2 × Ar-C), 126.7 (Ar-C), 126.6 (Ar-C), 75.4 (SCH₂O), 68.7 (OCH₂), 65.7 (OCH₂), 21.6 (CH₃), 20.5 (CH₃). HRMS (ES) *m/z* Calculated for C₁₇H₂₀NaO₄S₂ [M+Na]: 375.0701; Found: 375.0725 [M+Na].

1-Methyl-2-({2-[(4-methylbenzenesulfonyl)oxy]ethoxy} methanesulfonyl)benzene (2e)

meta-Chloroperbenzoic acid (2.21 g, 12.81 mmol) was added to a solution of sulfide S2 (1.55 g, 4.39 mmol) in dichloromethane (60 mL) at 0 °C and the OTs mixture stirred at 0 °C for 1 h then stirred at rt for 3 h 45 min. The reaction was quenched with Na_2SO_3 (100 mL) and extracted with dichloromethane (5 × 20 mL). The combined organic layers were washed with 1 M NaOH (2 × 15 mL) and sat. aq. NH₄Cl (25 mL) then dried (MgSO₄), filtered and the solvent removed under reduced pressure. Purification by flash chromatography (40 % EtOAc/hexane) afforded sulfone **2e** (1.67 g, 99%) as a white solid; m.p. 78–79 °C. $R_f = 0.17$ (40%) EtOAc/hexane). IR (film)/cm⁻¹ 2925, 1597, 1574, 1457, 1428, 1372, 1357, 1319, 1289, 1247, 1235, 1189, 1120, 1096, 1080, 1058, 1047, 1021, 950, 844, 813, 806, 707. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (1 H, dd, J = 8.0, 1.3 Hz, Ar-H), 7.74 (2 H, d, J = 8.3 Hz, 2 × Ts-H), 7.58–7.53 (1 H, m, Ar-H), 7.41-7.31 (4 H, m, 2 × Ts-H + 2 × Ar-H), 4.57 (2 H, s, SCH₂O), 4.14-4.10 (2 H, m, OCH₂), 4.07-4.03 (2 H, m, OCH₂), 2.67 (3 H, s, CH₃), 2.45 (3 H, s, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 145.0 (C_a), 138.8 (C_a), 135.3 (C_a), 134.2 (Ar-C), 132.8 (Ar-C), 132.7 (C_a), 131.1 (Ar-C), 129.9 (2 × Ts-C), 127.9 (2 × Ts-C), 126.7 (Ar-C), 86.0 (SCH₂O), 70.9 (OCH₂), 68.4 (OCH₂), 21.7 (CH₃), 20.5 (CH₃). HRMS (NSI) m/z Calculated for $C_{17}H_{24}NO_6S_2^+$ [M+NH₄]⁺: 402.1040; Found: 402.1029 $[M+NH_4]^+$.

0,0

2-(2-Methylbenzenesulfonyl)oxetane (1e)

A solution of LiHMDS (0.61 M in THF, 3.52 mL, 2.15 mmol) was added dropwise to a solution of sulfone **2e** (0.75 g, 1.95 mmol) in THF (60 mL) at 0 °C and stirred for 1 h 30 min. The reaction was guenched with sat. aq. NH_4CI (30 mL) and extracted

with CH₂Cl₂ (5 × 20 mL). The combined organics were dried (MgSO₄), filtered and the solvent removed under reduced pressure. Purification by flash chromatography (40% EtOAc/hexane) afforded oxetane **1e** (0.39 g, 95%) as a colourless oil. R_f = 0.36 (40% EtOAc/hexane). IR (film)/cm⁻¹ 2973, 2901, 1595, 1568, 1471, 1444, 1309, 1290, 1270, 1232, 1198, 1148, 1128, 1065, 1026, 936, 908, 840, 763, 716, 694, 665. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (1 H, dd, *J* = 7.6, 1.5 Hz, Ar-H), 7.56–7.51 (1 H, m, Ar-H), 7.41–7.32 (2 H, m, 2 × Ar-H), 5.46 (1 H, dd, *J* = 7.7, 5.5 Hz, OCHS), 4.88–4.80 (1 H, m, OCH*H*), 4.70–4.63 (1 H, m, OC*H*H), 3.22–3.07 (2 H, m, OCH₂C*H*₂), 2.72 (3 H, s, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 140.0 (C_q), 134.1 (Ar-C), 133.8 (C_q), 132.8 (Ar-C), 131.5 (Ar-C), 126.5 (Ar-C), 94.2 (OCHS), 71.6 (OCH₂), 22.4 (OCH₂CH₂), 20.9 (CH₃). HRMS (APCI) *m/z* Calculated for C₁₀H₁₃O₃S⁺ [M+H]⁺: 213.0580; Found: 213.0579 [M+H]⁺.

Synthesis of 2-((2-Chlorophenyl)sulfonyl)oxetane (1f)

2-Chlorophenyl chloromethyl sulfide (5f)

N-Chlorosuccinimide (4.55 g, 34.11 mmol) was added portionwise to a solution of 2-chlorothioanisole (4.10 mL, 31.01 mmol) in dichloroethane (50 mL). The reaction was stirred at rt for 70 h then filtered through a short pad of silica, eluting with

CH₂Cl₂ (50 mL). The solvent was removed under reduced pressure to afford chloromethyl sulfide **5f** (6.00 g, 99%) as a yellow oil, which was used without further purification. $R_f = 0.10$ (40% EtOAc/hexane). IR (film)/cm⁻¹ 1576, 1452, 1432, 1226, 1117, 1035, 935, 851, 736, 663. ¹H NMR (400 MHz, CDCl₃) δ 7.60 (1 H, dd, J = 7.8, 1.6 Hz, Ar-H), 7.44 (1 H, dd, J = 7.8, 1.5 Hz, Ar-H), 7.32 (1 H, ddd, J = 9.1, 7.8, 1.5 Hz, Ar-H), 7.25 (1 H, ddd, J = 9.1, 7.8, 1.6 Hz, Ar-H), 5.02 (2 H, s, SCH₂Cl). ¹³C NMR (100 MHz, CDCl₃) δ 134.5 (C_q), 132.4 (C_q), 130.4 (Ar-C), 130.0 (Ar-C), 128.5 (Ar-C), 127.4 (Ar-C), 48.3 (SCH₂Cl). HRMS (EI) *m/z* Calculated C₇H₆S³⁵Cl₂[M]: 191.9567; Found 191.9572 [M].

2-(((2-Chlorophenyl)thio)methoxy)ethanol (6f)

Sodium hydride (60% in mineral oil, 1.60 g, 40.11 mmol) was added to ethylene glycol (350 mL) at 0 °C and stirred for 1 h 30 min. Sodium iodide (6.01 g, 40.10 mmol) was added followed by sulfide **5f** (6.88 g, 35.84 mmol). The resulting solution was stirred at 0 °C for 2 h then warmed to rt for 17 h.

H₂O (175 mL) was added and the product was extracted with ethyl acetate (10 × 30 mL). The combined organic layers were dried (MgSO₄), filtered and the solvent removed under reduced pressure. Purification by flash chromatography (30% EtOAc/hexane) afforded alcohol **6f** (5.60 g, 71%) as a pale yellow oil. R_f = 0.42 (100% EtOAc). IR (film)/cm⁻¹ 3380, 2927, 1575, 1454, 1431, 1309, 1253, 1100, 1055, 1033, 1018, 887, 824, 745, 656. ¹H NMR (400 MHz, CDCl₃) δ 7.61 (1 H, dd, *J* = 7.8, 1.6 Hz, Ar-H), 7.38 (1 H, dd, *J* = 7.8, 1.5 Hz, Ar-H), 7.23 (1 H, ddd, *J* = 9.1, 7.8, 1.5 Hz, Ar-H), 7.16 (1 H, ddd, *J* = 9.1, 7.8, 1.6 Hz, Ar-H), 5.10 (2 H, s, SCH₂O), 3.75 (4 H, br s, OCH₂CH₂OH), 2.05 (1 H, br s, OH). ¹³C NMR (100 MHz, CDCl₃) δ 134.8 (C_q), 134.0 (C_q), 130.2 (Ar-C), 129.7 (Ar-C), 127.5 (Ar-C), 127.3 (Ar-C), 74.8 (SCH₂O), 70.0 (OCH₂), 61.5 (OCH₂). HRMS (EI) *m/z* Calculated for C₉H₁₅NO₂S³⁵CI [M+NH₄]: 236.0512; Found: 236.0521 [M+NH₄].

2-{[(2-Chlorophenyl)sulfanyl]methoxy}ethyl-4-methylbenzene-1-sulfonate (S3)

Triethylamine (9.59 mL, 68.80 mmol) and trimethylamine hydrochloride ots (0.22 g, 2.29 mmol) were added to a solution of sulfide **6f** (5.02 g, 22.93 mmol) in toluene (100 mL) at 0 °C and stirred for 1 h. 4-Toluenesulfonyl chloride (8.74 g, 45.87 mmol) was added portionwise. The mixture was stirred at 0 °C for 50 min then allowed to warm to rt and stirred for a further 1 h 30 min. H₂O (75 mL) was added to the reaction and the product was extracted with EtOAc (5 × 25 mL). The combined organic layers were dried (MgSO₄), filtered and the solvent removed under reduced pressure. Purification by flash chromatography (20% EtOAc/hexane) afforded tosylate **S3** (8.03 g, 94%) as a white solid, m.p. = 40–42 °C. R_f = 0.15 (20% EtOAc/hexane). IR (film)/cm⁻¹ 3069, 2876, 1596, 1573, 1450, 1357, 1314, 1230, 1175, 1123, 1085, 1018, 924, 835, 759, 730, 661. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (2 H, d, *J* = 8.0 Hz, 2 × Ts-H), 7.55 (1 H, dd, *J* = 7.9, 1.7 Hz, Ar-H), 7.37 (1 H, dd, *J* = 7.9, 1.6 Hz, Ar-H), 7.32 (2 H, d, *J* = 8.0 Hz, 2 × Ts-H), 7.25–7.14 (2 H, m, 2 × Ar-H), 5.00 (2 H, s, SCH₂O), 4.23–4.18 (2 H, m, OCH₂CH₂), 3.80–3.80 (2 H, m, OCH₂CH₂), 2.45 (3 H, s, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 144.9 (C_q), 134.6 (C_q), 133.8 (C_q), 132.9 (C_q), 130.3 (Ar-C), 129.8 $(2 \times \text{Ts-C})$, 129.6 (Ar-C), 127.9 (2 × Ts-C), 127.5 (Ar-C), 127.4 (Ar-C), 74.6 (SCH₂O), 68.6 (OCH₂), 65.8 (OCH₂), 21.6 (CH₃). HRMS (ES) *m/z* Calculated C₁₈H₂₁NO₄S₂³⁵Cl [M+H+CH₃CN]: 414.0601; Found: 414.0605 [M+H+CH₃CN].

2-(((2-Chlorophenyl)sulfonyl)methoxy)ethyl 4-methylbenzene sulfonate (2f)

meta-Chloroperbenzoic acid (70%, 10.23 g, 41.52 mmol) was added to a solution of sulfide **S3** (5.16 g, 13.84 mmol) in dichloromethane (185 mL) at 0 °C and the mixture stirred at 0 °C for 2 h 30 min, then warmed to rt and

stirred for a further 1 h. Another equivalent of *m*CPBA was added (3.30 g) and the reaction stirred at rt for 2 h. The reaction was quenched with sat. aq. Na₂SO₃ (50 mL) and extracted with dichloromethane (5 × 25 mL). The combined organic layers were washed with 1 M NaOH (2 × 20 mL) and sat. aq. NH₄Cl (20 mL) then dried (MgSO₄), filtered and the solvent removed under reduced pressure. Purification by flash chromatography (40% EtOAc/hexane) afforded sulfone **2f** (5.03 g, 90%) as a white solid; m.p = 113–114 °C. R_f = 0.16 (40% EtOAc/hexane). IR (film)/cm⁻¹ 2996, 1597, 1575, 1429, 1373, 1358, 1325, 1296, 1250, 1190, 1175, 1126, 1093, 1036, 915, 844, 769, 728, 663. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (1 H, dd, *J* = 7.9, 1.6 Hz, Ar-H), 7.72 (2 H, d, *J* = 8.1 Hz, 2 × Ts-H), 7.64–7.55 (2 H, m, 2 × Ar-H), 7.52–7.47 (1 H, m, Ar-H), 7.33 (2 H, d, *J* = 8.1 Hz, 2 × Ts-H), 4.83 (2 H, s, SCH₂O), 4.11–4.07 (2 H, m, OCH₂CH₂), 4.06–4.03 (2 H, m, OCH₂CH₂), 2.45 (3 H, s, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 145.0 (C_q), 135.3 (Ar-C), 134.6 (C_q), 132.9 (Ar-C), 132.9 (C_q), 132.6 (C_q), 131.8 (Ar-C), 129.9 (2 × Ts-C), 127.9 (2 × Ts-C), 127.6 (Ar-C), 84.7 (SCH₂O), 70.8 (OCH₂CH₂), 68.4 (OCH₂CH₂), 21.7 (CH₃). HRMS (ES) *m/z* Calculated C₁₆H₁₈O₆S₂³⁵Cl [M+H]: 405.0233; Found 405.0237 [M+H].

2-((2-Chlorophenyl)sulfonyl)oxetane (1f)

A solution of LiHMDS (0.61 M in THF, 4.45 mL, 2.71 mmol) was added dropwise to a solution of sulfone **2f** (1.00 g, 2.47 mmol) in THF (75 mL) at 0 $^{\circ}$ C and stirred for 1 h 30 min. The reaction was quenched with sat. aq. NH₄Cl (40 mL) and extracted

with CH₂Cl₂ (5 × 20 mL). The combined organics were dried (MgSO₄), filtered and the solvent removed under reduced pressure. Purification by flash chromatography (40% EtOAc/hexane) afforded oxetane **1f** (0.50 g, 88%) as a white solid; m.p = 70–71 °C. R_f = 0.24 (40% EtOAc/hexane). IR (film)/cm⁻¹ 3065, 2918, 1574, 1435, 1311, 1274, 1146, 1107, 1066, 1028, 980, 894, 748, 710, 684. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (1 H, dd, *J* = 7.9, 1.5 Hz, Ar-H), 7.63–7.53 (2 H, m, 2 × Ar-H), 7.52–7.47 (1 H, m, Ar-H), 5.95 (1 H, dd, *J* = 8.1, 5.1 Hz, OCHS), 5.01–4.93 (1 H, m, OCH*H*), 4.71 (1 H, dt, *J* = 10.8, 5.5 Hz, OC*H*H), 3.32–3.15 (2 H, m, OCH₂C*H*₂). ¹³C NMR (100 MHz, CDCl₃) δ 135.2 (Ar-C), 133.5 (C_q), 133.4 (Ar-C), 133.2 (C_q), 131.9 (Ar-C), 127.4 (Ar-C), 92.9 (SCHO), 72.3 (OCH₂), 21.9 (OCH₂CH₂). HRMS (CI) *m/z* Calculated C₉H₁₀O₃S³⁵CI [M+H]: 233.0039; Found: 233.0043 [M+H].

CI

CI

CI

Synthesis of 2-(3-Chlorobenzenesulfonyl)oxetane (1g)

1-Chloro-3-[(choromethyl)sulfanyl]benzene (5g)

N-Chlorosuccinimide (1.00 g, 7.49 mmol) was added portionwise to a solution of 3-chlorothioanisole (0.90 mL, 6.81 mmol) in dichloroethane (10 mL). The reaction was stirred at rt for 17 h then filtered through a short pad of silica, eluting with CH₂Cl₂ (25 mL). The solvent was removed under reduced pressure to afford chloromethyl sulfide **5g** (1.24 g, 95%) as a pale yellow oil, which was used without further purification. $R_f = 0.73$ (40% EtOAc/hexane). IR (film)/cm⁻¹ 1576, 1462, 1402, 1227, 1119, 1085, 852, 777, 720, 677. ¹H NMR (400 MHz, CDCl₃) δ 7.54–7.49 (1 H, m, Ar-H), 7.42–7.37 (1 H, m, Ar-H), 7.34–7.28 (2 H, m, 2 × Ar-H), 4.97 (2 H, s, SCH₂Cl). ¹³C NMR (100 MHz, CDCl₃) δ 135.2 (C_q), 135.0 (C_q), 130.2 (Ar-C), 130.2 (Ar-C), 128.1 (Ar-C), 50.1 (SCH₂Cl).

Sodium bydride (60% in mineral oil 0.27 g 6.87 mm

Sodium hydride (60% in mineral oil, 0.27 g, 6.87 mmol) was added to ethylene glycol (55 mL) at 0 °C and stirred for 1 h 20 min. Sodium iodide

(1.03 g, 6.87 mmol) was added followed by sulfide **5g** (1.20 g, 6.25 mmol). The resulting solution was stirred at 0 °C for 1 h then warmed to rt and stirred for a further 17 h. H₂O (30 mL) was added and the product was extracted with ethyl acetate (10 × 15 mL). The combined organic layers were dried (MgSO₄), filtered and the solvent removed under reduced pressure. Purification by flash chromatography (30% EtOAc/hexane) afforded alcohol **6g** (0.97 g, 71%) as a colourless oil. R_f = 0.10 (30% EtOAc/hexane). IR (film)/cm⁻¹ 3381 (OH), 2929, 1576, 1562, 1460, 1400, 1307, 1052, 1017, 886, 823, 773, 677. ¹H NMR (400 MHz, CDCl₃) δ 7.49–7.46 (1 H, m, Ar-H), 7.35 (1 H, dt, *J* = 6.6, 2.0 Hz, Ar-H), 7.26–7.19 (2 H, m, 2 × Ar-H), 5.07 (2 H, s, SCH₂O), 3.83–3.73 (4 H, m, OCH₂CH₂OH), 1.87 (1 H, br s, OH). ¹³C NMR (100 MHz, CDCl₃) δ 137.6 (C_q), 134.5 (C_q), 129.9 (Ar-C), 129.4 (Ar-C), 127.9 (Ar-C), 126.8 (Ar-C), 75.9 (SCH₂O), 69.9 (OCH₂), 61.4 (OCH₂). HRMS (CI) *m/z* Calculated C₉H₁₂O₂S³⁵CI [M+H]: 219.0247; Found: 219.0253 [M+H].

2-{[(3-Chlorophenyl)sulfanyl]methoxy}ethyl-4-methylbenzene-1sulfonate (S4)

OTs Triethylamine (1.65 mL, 11.83 mmol) and trimethylamine hydrochloride (38 mg, 0.39 mmol) were added to a solution of sulfide **6g** (0.86 g, 3.94 mmol) in toluene (18 mL) at 0 °C and stirred for 30 min. 4-Toluenesulfonyl chloride (1.50 g, 7.87 mmol) was added portionwise. The mixture was stirred at 0 °C for 20 min then allowed to warm to rt and stirred for a further 1 h 30 min. H₂O (20 mL) was added to the reaction and the product was extracted with EtOAc (5 \times 15 mL). The combined organic layers were dried (MgSO₄), filtered and the solvent removed under reduced pressure. Purification by flash chromatography (20% EtOAc/hexane) afforded tosylate S4 (1.35 g, 92%) as a colourless oil. R_f = 0.15 (20% EtOAc/hexane). IR (film)/cm⁻¹ 2921, 1576, 1453, 1431, 1251, 1117, 1034, 954, 907, 735, 658. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (2 H, d, J = 8.2 Hz, 2 × Ts-H), 7.40 (1 H, s, Ar-H), 7.33 (2 H, d, J = 8.2 Hz, 2 × Ts-H), 7.31–7.26 (1 H, m, Ar-H), 7.23–7.18 (2 H, m, 2 × Ar-H), 4.95 (2 H, s, SCH₂O), 4.24–4.18 (2 H, m, TsOCH₂), 3.84–3.78 (2 H, m, CH₂OCH₂CH₂), 2.44 (3 H, s, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 144.9 (C_a), 137.4 (C_a), 134.6 (C_a), 132.8 (C_a), 129.9 (Ar-C), 129.8 (2 × Ts-C), 129.4 (2 × Ar-C), 127.9 (2 × Ts-C), 126.9 (Ar-C), 75.8 (SCH₂O), 68.6 (OCH₂), 65.8 (OCH₂), 21.6 (CH₃). HRMS (APCI) *m/z* Calculated C₁₆H₂₁³⁵CINO₄S₂⁺ [M+NH₄]⁺: 390.0595; Found: 390.0587 [M+NH₄]⁺.

1-Chloro-3-({2-[(4-methylbenzenesulfonyl)oxy]ethoxy} methanesulfonyl)benzene (2g)

meta-Chloroperbenzoic acid (0.41 g, 2.38 mmol) was added to a solution of sulfide **S4** (0.29 g, 0.78 mmol) in dichloromethane (12 mL) at 0 °C and the mixture stirred at 0 °C for 2 h. The reaction was quenched with Na₂SO₃

(20 mL) and extracted with dichloromethane (5 × 10 mL). The combined organic layers were washed with 1 M NaOH (2 × 10 mL) and sat. aq. NH₄Cl (15 mL) then dried (MgSO₄), filtered and the solvent removed under reduced pressure. Purification by flash chromatography (40% EtOAc/hexane) afforded sulfone **2g** (0.32 g, 99%) as an off white solid; m.p. = 110–111 °C. R_f = 0.30 (40% EtOAc/hexane). IR (film)/cm⁻¹ 2956, 2256, 1598, 1458, 1416, 1356, 1327, 1294, 1175, 1153, 1096, 1020, 908, 814, 774, 727, 660. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (1 H, s, Ar-H), 7.81 (1 H, d, *J* = 7.8 Hz, Ar-H), 7.76 (2 H, d, *J* = 8.4 Hz, 2 × Ts-H), 7.66 (1 H, d, *J* = 7.8 Hz, Ar-H), 7.53 (1 H, dd, *J* = 8.0, 7.8 Hz, Ar-H), 7.33 (2 H, d, *J* = 8.4 Hz, 2 × Ts-H), 4.54 (2 H, s, SCH₂O), 4.18–4.07 (4 H, m, OCH₂CH₂O), 2.45 (3 H, s, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 145.1 (Cq), 138.6 (Cq), 135.5 (Cq), 134.4 (Ar-C), 132.6 (Cq), 130.6 (Ar-C), 129.9 (2 × Ts-C), 128.6 (Ar-C), 127.9 (2 × Ts-C), 127.1 (Ar-C), 86.1 (SCH₂O), 70.8 (OCH₂), 68.4 (OCH₂), 21.6 (CH₃). HRMS (ES) *m/z* Calculated C₁₆H₁₈O₆S₂³⁵Cl [M+H]: 405.0233; Found: 405.0234 [M+H].

2-(3-Chlorobenzenesulfonyl)oxetane (1g)

^{CI} \longrightarrow ^S \longrightarrow ^O A solution of LiHMDS (0.61 M in THF, 0.96 mL, 0.58 mmol) was added dropwise to a solution of sulfone **2g** (0.21 g, 0.52 mmol) in THF (16 mL) at 0 °C and stirred for 1 h 30 min. The reaction was quenched with sat. aq. NH₄Cl (20 mL) and extracted with CH₂Cl₂ (5 × 15 mL). The combined organics were dried (MgSO₄), filtered and the solvent removed under reduced pressure. Purification by flash chromatography (40% EtOAc/hexane) afforded oxetane **1g** (84 mg, 70%) as an off white solid; m.p. = 82–83 °C. R_f = 0.26 (40% EtOAc/hexane). IR (film)/cm⁻¹ 3090, 2912, 1579, 1460, 1439, 1409, 1312, 1263, 1232, 1148, 1119, 1075, 1026, 976, 928, 897, 797, 700, 662. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (1 H, t, *J* = 1.7 Hz, Ar-H), 7.87 (1 H, d, *J* = 7.7 Hz, Ar-H), 7.67 (1 H, d, *J* = 7.7 Hz, Ar-H), 7.53 (1 H, dd, *J* = 7.3, 6.0 Hz, OCHS), 4.88–4.81 (1 H, m, OCHH), 4.71–4.64 (1 H, m, OCHH), 3.21–3.09 (2 H, m, OCH₂CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 137.1 (C_q), 135.5 (C_q), 134.4 (Ar-C), 130.4 (Ar-C), 129.4 (Ar-C), 127.5 (Ar-C), 94.1 (SCHO), 71.6 (OCH₂), 22.2 (OCH₂CH₂). HRMS (APCI) *m/z* Calculated C₉H₁₀³⁵ClO₃S⁺ [M+H]⁺: 233.0034; Found: 233.0032 [M+H]⁺.

Synthesis of 2-((4-Fluorophenyl)sulfonyl)oxetane (1h)

1-Fluoro-4-(methylsulfanyl)benzene (3h)

Potassium carbonate (11.84 g, 85.67 mmol) was added to a solution of 4-fluorobenzene thiol (10.00 g, 78.02 mmol) in acetone (100 mL) followed by Mel (5.10 mL, 81.92 mmol) and the reaction stirred at rt for 2 h 30 min. The reaction was

filtered through celite and the solvent removed under reduced pressure. The crude material was dissolved in diethyl ether (50 mL) and washed with 5% NaOH (3 × 150 mL). The combined aqueous layers were extracted with ether (2 × 50 mL) then the combined organics were washed with brine (50 mL), dried (MgSO₄) and solvent removed under reduced pressure to afford sulfide **3h** (10.90 g, 98%) as a pale yellow oil which was used without further purification. $R_f = 0.72$ (40%) EtOAc/hexane). IR (film)/cm⁻¹ 2921, 1589, 1488, 1437, 1396, 1223, 1157, 1092, 1013, 968, 817, 723. ¹H NMR (400 MHz, CDCl₃) δ 7.30–7.24 (2 H, m, 2 × Ar-H), 7.02 (2 H, dd, J = 8.7, 8.6 Hz, 2 × Ar-H), 2.48 (3 H, s, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 161.0 (C_q, d, J_{CF} = 244.1 Hz, Ar-C_q-F), 133.3 (C_a, d, J_{CF} = 3.1 Hz, Ar-C_a), 129.1 (d, J_{CF} = 7.9 Hz, 2 × Ar-C), 115.8 (d, J_{CF} = 21.5 Hz, 2 × Ar-C), 16.9 (CH₃). ¹⁹F NMR (400 MHz, CDCl₃) δ –117.29 (Ar-F). HRMS (APCI) m/z Calculated $C_7H_8FS^+$ [M+H]⁺: 143.0325; Found: 145.0322 [M+H]⁺. The observed data (¹H) is consistent with that reported in the literature.³

1-[(Chloromethyl)sulfany]-4-fluorobenzene (5h)

N-Chlorosuccinimide (10.33 g, 77.36 mmol) was added portionwise to a solution of sulfide **3h** (10.00 g, 70.33 mmol) in carbon tetrachloride (65 mL). The reaction was stirred at rt for 19 h then filtered through a short pad of silica, eluting with CH₂Cl₂ (40 mL). The solvent was removed under reduced pressure to afford chloromethyl sulfide **5h** (11.47 q, 94%) as a pale vellow oil, which was used without further purification. $R_f = 0.74$ (40%) EtOAc/hexane). IR (film)/cm⁻¹ 2985, 1734, 1590, 1491, 1226, 1173, 1157, 1091, 1044, 916, 826, 732. ¹H NMR (400 MHz, CDCl₃) δ 7.58–7.52 (2 H, m, 2 × Ar-H), 7.09 (2 H, dd, J = 8.7, 8.6 Hz, 2 × Ar-H), 4.90 (2 H, s, SCH₂Cl). ¹³C NMR (100 MHz, CDCl₃) δ 163.0 (C_q, d, J_{CF} = 249.5 Hz, Ar-C_q-F), 134.3 (d, J_{CF} = 7.8 Hz, 2 × Ar-C), 128.1 (C_q, d, J_{CF} = 2.7 Hz, Ar-C_q), 116.4 (d, J_{CF} = 22.1 Hz, 2 × Ar-C), 52.0 (SCH₂). ¹⁹F NMR (400 MHz, CDCl₃) δ –112.57 (Ar-F). HRMS (APCI) *m/z* Calculated C₇H₆³⁵CIFS⁺ [M]⁺: 175.9857; Found: 175.9855 [M]⁺. The observed data (¹H, ¹³C, IR) is consistent with that reported in the literature.⁴

2-{[(4-Fluorophenyl)sulfanyl]methoxy}ethan-1-ol (6h)

Sodium hydride (60% in mineral oil, 0.36 g, 9.00 mmol) was added to ethylene glycol (65 mL) at 0 °C and stirred for 1 h. Sodium iodide (1.35 g, 9.00 mmol) was added followed by sulfide 5h (1.44 g, 8.18 mmol). DMF

(2 mL) was added to aid solubility. The resulting solution was stirred at 0 °C for 45 min then warmed to rt and stirred for a further 16 h 30 min. H₂O (50 mL) was added and the product was extracted with ethyl acetate (10 \times 20 mL). The combined organic layers were dried (MgSO₄). filtered and the solvent removed under reduced pressure. Purification by flash chromatography (30% EtOAc/hexane) afforded alcohol **6h** (1.19 g, 72%) as a colourless oil. $R_f = 0.16$ (30% EtOAc/hexane). IR (film)/cm⁻¹ 3379 (OH), 2927, 1589, 1489, 1458, 1397, 1308, 1219 (CF), 1087, 1053, 1013, 887, 823, 676. ¹H NMR (400 MHz, CDCl₃) δ 7.49–7.43 (2 H, m, 2 × Ar-H), 7.04–6.97 (2 H, m, 2 × Ar-H), 4.97 (2 H, s, SCH₂O), 3.79–3.71 (4 H, m, OCH₂CH₂OH), 2.11 (1 H, br s, OH). ¹³C NMR (100 MHz, CDCl₃) δ 162.3 (C_{q} , d, J_{CF} = 247.7 Hz, Ar-C_q-F), 133.2 (d, J_{CF} = 8.5 Hz, 2 × Ar-C), 130.3 (C_q, d, J_{CF} = 2.8 Hz, Ar-C_q), 116.1 (d, J_{CF} = 21.2 Hz, 2 × Ar-C), 77.2 (SCH₂O),

69.8(OCH₂), 61.5 (OCH₂). ¹⁹F NMR (400 MHz, CDCl₃) δ –114.53 (CF). HRMS (APCI) m/z Calculated C₉H₁₅FNO₂S⁺ [M+NH₄]⁺: 220.0802; Found: 220.0799 [M+NH₄]⁺.

2-(((4-Fluorophenyl)thio)methoxy)ethyl 4-methylbenzenesulfonate (S6) Triethylamine (2.06 mL, 14.82 mmol) and trimethylamine hydrochloride (46 mg, 0.49 mmol) were added to a solution of sulfide 6h (1.00 g, 4.94 mmol) in toluene (21 mL) at 0 °C and stirred for 50 min. 4-Toluenesulfonyl chloride (1.88 g, 9.89 mmol) was added portionwise. The mixture was stirred at 0 °C for 30 min then allowed to warm to rt and stirred for a further 1 h 30 min. H_2O (40 mL) was added to the reaction and the product was extracted with EtOAc (5×20 mL). The combined organic layers were dried (MgSO₄), filtered and the solvent removed under reduced pressure. Purification by flash chromatography (20% EtOAc/hexane) afforded tosylate S6 (1.71 g, 96%) as a colourless oil. $R_f = 0.22$ (20% EtOAc/hexane). IR (film)/cm⁻¹2977, 2910, 1588, 1485, 1458, 1433, 1355, 1307, 1216, 1169, 1120, 1020, 912, 806, 781, 662. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (2 H, d, J = 8.4 Hz, 2 × Ts-H), 7.45–7.39 (2 H, m, 2 × Ar-H), 7.33 (2 H, d, J = 8.4 Hz, 2 × Ts-H), 7.01–6.95 (2 H, m, 2 × Ar-H), 4.88 (2 H, s, SCH₂O), 4.23–4.19 (2 H, m, OCH₂), 3.84–3.80 (2 H, m, OCH₂), 2.45 (3 H, s, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 162.3 (C_q, d, J_{CF} = 237.8 Hz, C_q), 144.9 (C_q), 133.3 (d, J_{CF} = 8.2 Hz, 2 × Ar-C), 132.9 (C_q), 130.0 (C_q), 129.8 (2 × Ts-C), 127.9 (2 × Ts-C), 116.1 (d, J_{CF} = 20.3 Hz, 2 × Ar-C), 70.7 (SCH₂O), 68.6 (OCH₂CH₂), 65.6 (OCH₂CH₂), 21.6 (CH₃). ¹⁹F NMR (400 MHz, CDCl₃) δ -114.50 (CF). HRMS (NSI) *m/z* Calculated C₁₆H₂₁FNO₄S₂⁺ [M+NH₄]⁺: 374.0891; Found: 374.0891 $[M+NH_4]^+$.

0,0

2-(((4-Fluorophenyl)sulfonyl)methoxy)ethyl 4-methylbenzenesulfonate (2h)

meta-Chloroperbenzoic acid (70%, 2.07 g, 8.42 mmol) was added to a solution of sulfide S6 (1.00 g, 2.80 mmol) in dichloromethane (38 mL) at

0 °C and the mixture stirred at 0 °C for 2 h then warmed to rt and stirred for a further 3 h. The reaction was quenched with sat. aq. Na₂SO₃ (20 mL) and extracted with dichloromethane (5 × 20 mL). The combined organic layers were washed with 1 M NaOH (2 × 10 mL) and sat. aq. NH₄Cl (10 mL) then dried (MgSO₄), filtered and the solvent removed under reduced pressure. Purification by flash chromatography (40% EtOAc/hexane) afforded sulfone **2h** (1.07 g, 97%) as a white solid; m.p = 73–74 °C. R_f = 0.25 (40% EtOAc/hexane). IR (film)/cm⁻¹ 2947, 1590, 1494, 1459, 1359, 1322, 1289, 1230, 1175, 1134, 1078, 1018, 916, 835, 770, 703, 665. ¹H NMR (400 MHz, CDCl₃) δ 7.96–7.90 (2 H, m, 2 × Ar-H), 7.76 (2 H, d, *J* = 8.3 Hz, 2 × Ts-H), 7.34 (2 H, d, *J* = 8.3 Hz, 2 × Ts-H), 7.27–7.21 (2 H, m, 2 × Ar-H), 4.52 (2 H, s, SCH₂O), 4.17–4.14 (2 H, m, OCH₂CH₂), 4.13–4.09 (2 H, m, OCH₂CH₂), 2.45 (3 H, s, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 166.2 (C_q, d, *J*_{CF} = 254.6 Hz, Ar-C_q-F), 145.1 (C_q), 132.7 (C_q, d *J* = 2.7 Hz, Ar-C_q), 132.5 (C_q), 131.8 (d, *J*_{CF} = 9.7 Hz, 2 × Ar-C), 129.9 (2 × Ts-C), 127.9 (2 × Ts-C), 116.6 (d, *J*_{CF} = 22.6, 2 × Ar-C), 86.0 (SCH₂O), 70.6 (OCH₂), 68.4 (OCH₂), 21.6 (CH₃). ¹⁹F NMR (400 MHz, CDCl₃) δ –102.50 (CF). HRMS (ES) *m/z* Calculated for C₁₆H₁₈O₆FS₂ [M+H]: 389.0529; Found: 389.0521 [M+H].

2-((4-Fluorophenyl)sulfonyl)oxetane (1h)

A solution of LiHMDS (0.61 M in THF, 2.32 mL, 1.42 mmol) was added dropwise to a solution of sulfone **2h** (0.50 g, 1.29 mmol) in THF (40 mL) at 0 °C and stirred for 1 h 15 min. The reaction was quenched with sat. aq. NH₄Cl (40 mL) and extracted with CH₂Cl₂ (5 × 30 mL). The combined organics were dried (MgSO₄), filtered and the solvent removed under reduced pressure. Purification by flash chromatography (20% EtOAc/hexane) afforded oxetane **1h** (0.23 g, 83%) as a white solid; m.p = 74–75 °C. R_f = 0.18 (20% EtOAc). IR (film)/cm⁻¹ 2986, 2914, 1588, 1494, 1405, 1312, 1292, 1234, 1144, 1085, 1027, 982, 905, 846, 819, 723, 690. ¹H NMR (400 MHz, CDCl₃) δ 8.04–7.96 (2 H, m, 2 × Ar), 7.30–7.23 (2 H, m, 2 × Ar), 5.38 (1 H, dd, *J* = 7.8, 5.5 Hz, OCHS), 4.80 (1 H, ddd, *J* = 8.6, 7.7, 5.5 Hz, OCH*H*), 4.67 (1 H, ddd, *J* = 8.6, 6.2, 5.5 Hz, OCHH), 3.20–3.05 (2 H, m, OCH₂CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 166.3 (C_q, d, *J_{CF}* = 253.8 Hz, C_q-F), 132.3 (d, *J_{CF}* = 9.9 Hz, 2 × Ar-C), 131.3 (C_q), 116.5 (d, *J_{CF}* = 22.8 Hz, 2 × Ar-C), 94.1 (OCHS), 71.4 (OCH₂), 22.3 (OCH₂CH₂). ¹⁹F NMR (400 MHz, CDCl₃) δ –102.50 (CF). HRMS (CI) *m/z* Calculated for C₉H₁₀O₃FS [M+H]: 217.0335; Found: 217.0339 [M+H].

Synthesis of 2-(4-Bromobenzenesulfonyl)oxetane (1i)

1-Bromo-4-[(chloromethyl)sulfanyl]benzene (5i)

N-Chlorosuccinimide (3.75 g, 28.11 mmol) was added portionwise to a solution of 4-bromothioanisole (5.19 g, 25.55 mmol) in dichloroethene (40 mL). The Br reaction was stirred at rt for 18 h then filtered through a short pad of silica, eluting with dichloroethene (20 mL) and the solvent removed under reduced pressure to afford chloromethyl sulfide **5i** as a yellow oil (6.03 g, quant). Product was taken on without further purification. $R_f = 0.65$ (40% EtOAc/hexane). IR (film)/cm⁻¹ 1636, 1565, 1472, 1386, 1334, 1226, 1175, 1144, 1090, 1067, 1007, 906, 854, 808, 731, 715. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (2 H, d, J = 8.6 Hz, 2 × Ar-H), 7.39 (2 H, d, J = 8.6 Hz, 2 × Ar-H), 4.94 (2 H, s, SCH₂Cl). ¹³C NMR (100 MHz, CDCl₃) δ 137.1 (C₀), 132.5 (2 × Ar-C), 132.3 (2 × Ar-C), 122.3 (C_q), 50.6 (SCH₂Cl). HRMS (APCI) *m/z* Calculated for C₇H₆⁸⁰Br³⁵CIS⁺ [M]⁺: 237.9033; Found: 237.9031 [M]⁺.

ОН

2-{[(4-Bromophenyl)sulfanyl]methoxy}ethan-1-ol (6i)

Sodium hydride (60% in mineral oil, 1.03 g, 25.70 mmol) was added to ethylene glycol (200 mL) at 0 °C and stirred for 1 h. Sodium iodide (3.85 g, 25.70 mmol) was added followed by sulfide 5i (5.51 g, 23.36 mmol). DMF (2 mL) added to aid solubility. The resulting solution was stirred at 0 °C for 30 min then warmed to rt for 18 h. H₂O (100 mL) was added and the product was extracted with ethyl acetate (10 × 25 mL). The combined organic layers were dried (MgSO₄), filtered and the solvent removed under reduced pressure. Purification by flash chromatography (30% EtOAc/hexane) afforded alcohol 6i (4.83 g, 79%) as a pale yellow oil. $R_f = 0.14$ (30% EtOAc/hexane). IR (film)/cm⁻¹ 3348, 2926, 1473, 1426, 1387, 1308, 1263, 1105, 1087, 1052, 1019, 1006, 940, 915, 887, 727, 674. ¹H NMR (400 MHz, CDCl₃) δ 7.43 (2 H, d, J = 8.4 Hz, 2 × Ar-H), 7.35 (2 H, d, J = 8.4 Hz, 2 × Ar-H), 5.03 (2 H, s, SCH₂O), 3.79–3.72 (4 H, m, OCH₂CH₂), 1.85 (1 H, br s, OH). ¹³C NMR (100 MHz, CDCl₃) δ 134.7 (C_α), 132.0 (2 × Ar-C), 131.8 (2 × Ar-C), 121.0 (C_a), 76.3 (SCH₂O), 69.8 (OCH₂), 61.6 (OCH₂). HRMS (APCI) *m/z* Calculated for $C_9H_{15}^{79}BrNO_2S^+$ [M+NH₄]⁺: 280.0001; Found: 280.0000 [M+NH₄]⁺.

2-{[(4-Bromophenyl)sulfanyl]methoxy}ethyl-4methylbenzenesulfonate (S7)

OTs Triethylamine (6.59 mL, 47.28 mmol) and trimethylamine hydrochloride (0.15 g, 1.57 mmol) were added to a solution of sulfide 6i (4.12 g, 15.73 mmol) in toluene (55 mL) at 0 °C and stirred for 30 min. 4-Toluenesulfonyl chloride (6.01 g, 31.52 mmol) was added portionwise. The mixture was stirred at 0 °C for 30 min then warmed to rt and stirred for a further 1 h 30 min. H_2O (100 mL) was added to the reaction and the product was extracted with EtOAc (5 × 20 mL). The combined organic layers were dried (MgSO₄), filtered and the solvent removed under reduced pressure. Purification by flash chromatography (20% EtOAc/hexane) afforded tosylate S7 (6.31 g, 96%) as a white solid, m.p. = 54–55 °C. R_f = 0.19 (20% EtOAc/hexane). IR (film)/cm⁻¹ 1598, 1473, 1368, 1346, 1297, 1280, 1191, 1171, 1120, 1099, 1085, 1015, 1006, 949, 923, 809, 784, 725, 796, 680, 661. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (2 H, d, J = 8.3 Hz, 2 × Ar-H), 7.38 (2 H, d, J = 8.5 Hz, 2 × Ar-H), 7.33 (2 H, d, J = 8.3 Hz, 2 × Ar-H), 7.28 (2 H, d, J = 8.5 Hz, 2 × Ar-H), 4.92 (2 H, s, SCH₂O), 4.23–4.19 (2 H, m, OCH₂), 3.84–3.80 (2 H, m, OCH₂), 2.46 (3 H, m, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 144.9 (C_q), 134.5 (C_q), 132.9 (C_q), 132.0 (2 × Ar-C), 131.8 (2 × Ar-C), 129.8 (2 × Ts-C), 127.9 (2 × Ts-C), 121.0 (C_g), 76.1 (SCH₂O), 68.5 (OCH₂), 65.7 (OCH₂), 21.7 (CH₃). HRMS (ESI) *m/z* Calculated for C₁₆H₁₇O₄⁷⁹BrNaS₂ [M+Na]: 438.9644; Found: 438.9622 [M+Na].

1-Bromo-4-({2-[(4-methylbenzenesulfonyl)oxy]ethoxy}methane sulfonyl)benzene (2i)

meta-Chloroperbenzoic acid (3.85 g, 22.31 mmol) was added to a solution of sulfide **S7** (3.10 g, 7.45 mmol) in dichloromethane (100 mL) at 0 °C and

the mixture stirred at 0 °C for 3 h. The reaction was quenched with Na₂SO₃ (75 mL) and extracted with dichloromethane (5 × 30 mL). The combined organic layers were washed with 1 M NaOH (2 × 25 mL) and sat. aq. NH₄Cl (25 mL) then dried (MgSO₄), filtered and the solvent removed under reduced pressure. Purification by flash chromatography (50 % EtOAc/hexane) afforded sulfone **2i** (3.34 g, 99%) as a white solid; m.p. = 88–89 °C. R_f = 0.42 (50% EtOAc/hexane). IR (film)/cm⁻¹ 3099, 2953, 1574, 1458, 1358, 1323, 1290, 1247, 1175, 1135, 1107, 1078, 1008, 949, 916, 815, 715, 665. ¹H NMR (400 MHz, CDCl₃) δ 7.80–7.73 (4 H, m, 4 × Ar-H), 7.70 (2 H, d, *J* = 8.7 Hz, 2 × Ar-H), 7.35 (2 H, d, *J* = 8.0 Hz, 2 × Ar-H), 4.52 (2 H, s, SCH₂O), 4.18–4.13 (2 H, m, TsOCH₂), 4.12–4.08 (2 H, m, OCH₂), 2.46 (3 H, s, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 145.1 (C_q), 135.8 (C_q), 132.6 (C_q), 132.6 (2 × Ts-C), 130.4 (2 × Ts-C), 129.9 (2 × Ar-C), 129.8 (C_q), 127.9 (2 × Ar-C), 86.0 (SCH₂O), 70.6 (OCH₂), 68.3 (OCH₂), 21.7 (CH₃). HRMS (ES) *m/z* Calculated for C₁₆H₁₇⁷⁹BrNaO₆S₂ [M+Na]: 470.9548; Found: 470.9576 [M+Na].

2-(4-Bromobenzenesulfonyl)oxetane (1i)

A solution of LiHMDS (0.61 M in THF, 4.03 mL, 2.46 mmol) was added dropwise to a solution of sulfone **2i** (1.01 g, 2.25 mmol) in THF (70 mL) at 0 °C and stirred for 1 h 30 min. The reaction was quenched with sat. aq. NH₄Cl (30 mL) and extracted with CH₂Cl₂ (5 × 20 mL). The combined organics were dried (MgSO₄), filtered and the solvent removed under reduced pressure. Purification by flash chromatography (40% EtOAc/hexane) afforded oxetane **1i** (0.54 g, 86%) as a white solid; m.p. = 99–100 °C. R_f = 0.38 (40% EtOAc/hexane). IR (film)/cm⁻¹ 3089, 2979, 2929, 2909, 1571, 1468, 1441, 1387, 1313, 1272, 1246, 1175, 1144, 1109, 1084, 1067, 1059, 1029, 1007, 975, 953, 939, 895, 843, 818, 769, 707, 681. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (2 H, d, *J* = 8.6 Hz, 2 × Ar-H), 7.73 (2 H, d, *J* = 8.6 Hz, 2 × Ar-H), 5.37 (1 H, dd, *J* = 7.7, 5.5 Hz, OCHS), 4.85–4.77 (1 H, m, OCH*H*), 4.70–4.63 (1 H, m, OC*H*H), 3.20–3.05 (2 H, m, OCH₂C*H*₂). ¹³C NMR (100 MHz, CDCl₃) δ 134.3 (C_q), 132.5 (2 × Ar-C), 131.0 (2 × Ar-C), 129.9 (C_q), 94.1 (OCHS), 71.6 (OCH₂), 22.3 (OCH₂CH₂). HRMS (NSI) *m/z* Calculated for C₉H₉⁷⁹BrNaO₃S⁺ [M+Na]⁺: 298.9348; Found: 298.9349 [M+Na]⁺.

Synthesis of 2-[4-(Trifluoromethyl)benzenesulfonyl]oxetane (1j)

1-(Methylsulfanyl)-4-(trifluoromethyl)benzene (3j)

4-lodobenzo-trifluoride (1.08 mL, 7.35 mmol) was added to a solution of sodium thiomethoxide (0.57 g, 8.08 mmol) in DMF (18 mL) and the resulting solution was heated at 45 °C for 21 h. The reaction was quenched with sat. aq. NaCl (10 mL) and extracted with Et₂O (6 × 10 mL). The combined organics were dried (MgSO₄), filtered and the solvent removed under reduced pressure. Purification by flash chromatography (100% hexane) afforded methyl sulfide **3j** (1.32 g, 94%) as a white solid. R_f 0.65 (100% hexane). IR (film)/cm⁻¹ 2926, 1605, 1436, 1404, 1322, 1196, 1157, 1091, 1011, 949, 817, 779, 725, 698. ¹H NMR (400 MHz, CDCl₃) δ 7.53 (2 H, d, *J* = 8.2 Hz, 2 × Ar-H), 7.31 (2 H, d, *J* = 8.2 Hz, 2 × Ar-H), 2.52 (3 H, s, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 143.8 (C_q), 126.7 (C_q, q, *J_{CF}* = 31.8 Hz, C-CF₃), 125.6 (4 × Ar-C), 124.2 (C_q, q, *J_{CF}* = 270.5 Hz, CF₃), 15.0 (CH₃). ¹⁹F NMR (400 MHz, CDCl₃) δ -62.33 (CF₃). HRMS (EI) *m/z* Calculated for C₈H₇F₃S [M]: 192.0221; Found: 192.0228 [M]. The observed data (¹H and ¹³C) is consistent with that reported in the literature.⁵

1-[(Chloromethyl)sulfanyl]-4-(trifluoromethyl)benzene (5j)

N-Chlorosuccinimide (0.53 g, 3.97 mmol) was added portionwise to a solution of *p*-trifluoromethyl methyl sulfide **3j** (0.73 g, 3.81 mmol) in dichloroethane (8 mL). The reaction was stirred at rt for 17 h then filtered through a short pad

of silica, eluting with CH₂Cl₂ (15 mL). The solvent was removed under reduced pressure to afford chloromethyl sulfide **5**j (0.78 g, 91%) as a pale yellow oil. R_f 0.27 (10% Et₂O/hexane). IR (film)/cm⁻¹ 1607, 1500, 1405, 1321, 1228, 1165, 1119, 1094, 1061, 1013, 824, 734, 700. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (2 H, d, *J* = 8.6 Hz, 2 × Ar-H), 7.58 (2 H, d, *J* = 8.6 Hz, 2 × Ar-H), 5.03 (2 H, s, SCH₂Cl). ¹³C NMR (100 MHz, CDCl₃) δ 138.5 (C_q), 129.3 (C_q, q, *J_{CF}* = 32.1 Hz, C-CF₃), 129.0 (2 × Ar-C), 125.9 (q, *J_{CF}* = 3.1 Hz, 2 × Ar-C), 123.9 (C_q, q, *J_{CF}* = 272.9 Hz, CF₃), 48.8 (SCH₂Cl). ¹⁹F NMR (400 MHz, CDCl₃) δ –62.66 (CF₃). HRMS (EI) *m/z* Calculated for C₈H₆³⁵ClF₃S [M]: 225.9831; Found: 225.9831 [M].

OH

2-({[4-(Trifluoromethyl)phenyl]sulfanyl}methoxy)ethan-1-ol (6j)

Sodium hydride (60% in mineral oil, 76 mg, 1.95 mmol) was added to ethylene glycol (16 mL) at 0 °C and stirred for 40 min. Sodium iodide (0.29 g, 1.95 mmol) was added followed by sulfide **5**j (0.40 g,

1.77 mmol). The resulting solution was stirred at 0 °C for 2 h then warmed to rt for 15 h. H₂O (20 mL) was added and the product was extracted with ethyl acetate (10 × 10 mL). The combined organic layers were dried (MgSO₄), filtered and the solvent removed under reduced pressure. Purification by flash chromatography (30% EtOAc/hexane) afforded alcohol **6**j (0.28 g, 61%) as a pale yellow oil. R_f = 0.10 (30% EtOAc/hexane). IR (film)/cm⁻¹ 2927, 2296, 1607, 1403, 1321, 1162, 1060, 1013, 888, 825, 779, 677. ¹H NMR (400 MHz, CDCl₃) δ 7.59–7.52 (4 H, m, 4 × Ar-H), 5.12 (2 H, s, SCH₂O), 3.83–3.75 (4 H, m, OCH₂CH₂OH), 2.03 (1 H, br s, OH). ¹³C NMR (100 MHz, CDCl₃) δ 141.0 (C_q), 128.7 (2 × Ar-C), 128.2 (C_q, q, J_{CF} = 32.9 Hz, C-CF₃), 125.5 (q, J_{CF} = 3.3 Hz, 2 × Ar-C), 123.9 (C_q, q, J_{CF} = 272.0 Hz, CF₃), 75.0 (SCH₂O), 69.9 (OCH₂), 61.2 (OCH₂). ¹⁹F NMR (400 MHz, CDCl₃) δ –62.57 (CF₃). HRMS (CI) *m*/*z* Calculated C₁₀H₁₅NF₃O₂S [M+NH₄]⁺: 270.0770; Found: 270.0770 [M+NH₄]⁺.

2-({[4-(Trifluoromethyl)phenyl]sulfanyl}methoxy)ethyl-4methylbenzene-1-sulfonate (S9)

 $_{F_3C}$ Triethylamine (0.33 mL, 2.37 mmol) and trimethylamine hydrochloride (7 mg, 0.07 mmol) were added to a solution of sulfide **6j** (0.20 g, 0.79 mmol) in toluene (4 mL) at 0 °C and stirred for 30 min. 4-Toluenesulfonyl chloride (0.31 g, 1.61 mmol) was added portionwise. The mixture was stirred at 0 °C for 20 min then allowed to warm to rt and stirred for a further 1 h 30 min. H₂O (20 mL) was added to the reaction and the product was extracted with EtOAc (5 × 10 mL). The combined organic layers were dried (MgSO₄), filtered and the solvent removed under reduced pressure. Purification by flash chromatography (20% EtOAc/hexane) afforded tosylate **S9** (0.32 g, 99%) as an off white solid; m.p. = 70–71 °C. R_f = 0.15 (20% EtOAc/hexane). IR (film)/cm⁻¹ 2926, 1603, 1317, 1161, 1097, 1083, 1028, 996, 909, 826, 811, 759, 683. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (2 H, d, *J* = 8.3 Hz, 2 × Ts-H), 7.52–7.48 (4 H, m, 4 × Ar-H), 7.33 (2 H, d, *J* = 8.3 Hz, 2 × Ts-H), 5.02 (2 H, s, SCH₂O), 4.26–4.29 (2 H, m, TsOCH₂), 3.86–3.81 (2 H, m, CH₂OCH₂CH₂), 2.45 (3 H, s, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 144.9 (C_q), 140.7 (C_q), 132.9 (C_q), 129.8 (2 x Ts-C), 129.0 (2 × Ar-C), 128.5 (C_q, q, *J_{CF}* = 32.1 Hz, C-CF₃), 127.9 (2 x Ts-C), 125.6 (q, *J_{CF}* = 3.5 Hz, 2 × Ar-C), 124.0 (C_q, q, *J_{CF}* = 272.6 Hz, CF₃), 75.1 (SCH₂O), 68.5 (OCH₂), 65.8 (OCH₂), 21.6 (CH₃). ¹⁹F NMR (400 MHz, CDCl₃) δ –62.5 (CF₃). HRMS (APCI) *m/z* Calculated C₁₇H₂₁F₃NO₄S₂⁺ [M+NH₄]⁺: 424.0859; Found: 424.0854 [M+NH₄]⁺.

1-({2-[(4-Methylbenzenesulfonyl)oxy]ethoxy}methanesulfonyl)-4-(trifluoromethyl)benzene (2j)

meta-Chloroperbenzoic acid (0.12 g, 0.72 mmol) was added to a solution of sulfide **S9** (95 mg, 0.24 mmol) in dichloromethane (4 mL) at 0 °C and the mixture stirred at 0 °C for 2 h. The reaction was quenched with

Na₂SO₃ (10 mL) and extracted with dichloromethane (5 × 10 mL). The combined organic layers were washed with 1 M NaOH (2 × 10 mL) and sat. aq. NH₄Cl (15 mL) then dried (MgSO₄), filtered and the solvent removed under reduced pressure. Purification by flash chromatography (40% EtOAc/hexane) afforded sulfone **2j** (99 mg, 97%) as a white solid; m.p. = 86–87 °C. R_f = 0.26 (40% EtOAc/hexane). IR (film)/cm⁻¹ 2927, 1598, 1453, 1403, 1357, 1320, 1295, 1172, 1129, 1083, 1060, 1016, 915, 842, 815, 755, 695, 662. ¹H NMR (400 MHz, CDCI₃) δ 8.06 (2 H, d, *J* = 8.2 Hz, 2 × Ar-H), 7.83 (2 H, d, *J* = 8.2 Hz, 2 × Ar-H), 7.77 (2 H, d, *J* = 8.3 Hz, 2 × Ts-H), 7.34 (2 H, d, *J* = 8.3 Hz, 2 × Ts-H), 4.57 (2 H, s, SCH₂O), 4.20–4.09 (4 H, m, OCH₂CH₂O), 2.45 (3 H, s, CH₃). ¹³C NMR (100 MHz, CDCI₃) δ 145.2, (Cq), 140.4 (Cq), 135.8 (Cq, q, *J_{CF}* = 32.0 Hz, Ar-Cq), 132.6 (Cq), 129.9 (2 × Ts-C), 129.6 (2 × Ar-C), 127.9 (2 × Ts-C), 126.3 (q, *J_{CF}* = 3.5 Hz, 2 × Ar-C) 123.1 (Cq, q, *J_{CF}* = 263.9 Hz, CF₃), 85.9 (SCH₂O), 70.7 (OCH₂), 68.3 (OCH₂), 21.6 (CH₃). ¹⁹F NMR (400 MHz, CDCI₃) δ -63.2 (CF₃). HRMS (ES) *m/z* Calculated C₁₇H₁₆O₆F₃NaS₂ [M+Na]: 461.0316; Found 461.0328 [M+Na].

2-[4-(Trifluoromethyl)benzenesulfonyl]oxetane (1j)

A solution of LiHMDS (0.61 M in THF, 0.15 mL, 0.09 mmol) was added dropwise to a solution of sulfone **2j** (37 mg, 0.08 mmol) in THF (3 mL) at 0 °C and stirred for 1 h 30 min. The reaction was quenched with sat. aq. NH₄Cl (20 mL) and extracted with CH₂Cl₂ (5 × 10 mL). The combined organics were dried (MgSO₄), filtered and the solvent removed under reduced pressure. Purification by flash chromatography (20% EtOAc/hexane) afforded oxetane **1j** (10 mg, 46%) as a white solid. $R_f = 0.24$ (20% EtOAc/hexane). IR (film)/cm⁻¹ 2977, 2907, 1403, 1319, 1130, 1107, 1061, 1029, 984, 909, 844, 787, 715, 679. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (2 H, d, *J* = 8.0 Hz, 2 × Ar-H), 7.86 (2 H, d, *J* = 8.0 Hz, 2 × Ar-H), 5.41 (1 H, dd, *J* = 6.7, 6.0 Hz, OCHS), 4.90–4.82 (1 H, m, OCHH), 4.73–4.65 (1 H, m, OCHH), 3.22–3.11 (2 H, m, OCH₂CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 139.1 (C_q), 135.9 (C_q, q, *J_{CF}* = 33.0 Hz, C-CF₃), 130.1 (2 × Ar-C), 126.2 (q, *J_{CF}* = 3.6 Hz, 2 × Ar-C), 123.1 (C_q, q, *J_{CF}* = 272.6 Hz, CF₃), 94.1 (OCHS), 71.7 (OCH₂), 22.1 (OCH₂CH₂). ¹⁹F NMR (400 MHz, CDCl₃) δ –63.3 (CF₃). HRMS (ASAP) *m/z* Calculated for C₁₀H₁₀F₃O₃S [M+H]: 267.0303; Found: 267.0303 [M+H].

Synthesis of 2-((4-Methoxyphenyl)sulfonyl)oxetane (1k)

1-Methoxy-4-(methylthio)-benzene (3k)

Potassium carbonate (5.42 g, 39.23 mmol) was added to a solution of 4-methoxythiophenol (5.00 g, 4.39 mL, 35.66 mmol) in acetone (45 mL) followed MeO by MeI (2.33 mL, 37.43 mmol) and the reaction stirred at rt for 70 h. The reaction was filtered through celite and the solvent removed under reduced pressure. The crude material was dissolved in diethyl ether (30 mL) and washed with 1M NaOH (3 × 25 mL). The combined aqueous layers were extracted with ether (20 mL) then the combined organics were washed with brine (20 mL). dried (MgSO₄) and solvent removed under reduced pressure to afford sulfide **3k** (5.45 g, 99%) as a yellow oil which was used without further purification. $R_f = 0.43$ (40% EtOAc/hexane). IR (film)/cm⁻¹ 2919, 2834, 1592, 1492, 1462, 1438, 1282, 1238, 1175, 1105, 1029, 967, 818. ¹H NMR (400 MHz, CDCl₃) δ 7.29 (2 H, d, J = 8.7 Hz, 2 × Ar-H), 6.87 (2 H, d, J = 8.7 Hz, 2 × Ar-H), 3.80 (3 H, s, OCH₃), 2.46 (3 H, s, SCH₃). ¹³C NMR (100 MHz, CDCl₃) δ 158.1 (C_q), 130.2 (2 × Ar-C), 128.7 (C_q), 114.6 (2 × Ar-C), 55.3 (OCH₃), 18.1 (CH₃). The observed data (¹H) is consistent with that reported in the literature.

4-(Chloromethyl)thioanisole (5k)

N-Chlorosuccinimide (5.10 g, 38.13 mmol) was added portionwise to a solution of sulfide 3k (5.34 g, 34.66 mmol) in dichloroethane (55 mL). The MeC reaction was stirred at rt for 16 h 30 min then filtered through a short pad of silica, eluting with CH₂Cl₂ (40 mL). The solvent was removed under reduced pressure to afford chloromethyl sulfide **5k** (6.52 g, quant) as a pale yellow oil, which was used without further purification. $R_f = 0.45$ (40%) EtOAc/hexane). IR (film)/cm⁻¹ 2836, 1723, 1589, 1492, 1462, 1288, 1245, 1172, 1138, 1026, 823, 716. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (2 H, d, J = 8.9 Hz, 2 × Ar), 7.51 (2 H, d, J = 8.9 Hz, 2 × Ar), 5.46 (2 H, s, SCH₂Cl), 4.42 (3 H, s, OCH₃). ¹³C NMR (100 MHz, CDCl₃) δ 160.2 (C₀), 134.7 (2 × Ar-C), 123.3 (C_a), 114.7 (2 × Ar-C), 55.3 (OCH₃), 53.0 (SCH₂CI). HRMS (CI) m/z Calculated for $C_8H_9^{35}CIOS^+$ [M]⁺: 188.0057; Found: 188.0052 [M]⁺. The observed data (¹H) is consistent with that reported in the literature.⁷

2-(((4-Methoxyphenyl)thio)methoxy)ethanol (6k)

Sodium hydride (60% in mineral oil, 1.40 g, 35.09 mmol) was added to MeO ethylene glycol (300 mL) at 0 °C and stirred for 1 h 30 min. Sodium iodide (5.26 g, 35.09 mmol) was added followed by sulfide 5k (6.00 g, 31.90 mmol). The resulting solution was stirred at 0 °C for 2 h then warmed to rt for 16 h. H₂O (150 mL) was added and the product was extracted with ethyl acetate (10×25 mL). The combined organic layers were dried (MgSO₄), filtered and the solvent removed under reduced pressure. Purification by flash chromatography (30% EtOAc/hexane) afforded alcohol **6k** (3.95 g, 58%) as a colourless oil. $R_f =$ 0.10 (30% EtOAc/hexane) IR (film)/cm⁻¹ 3403, 2937, 1591, 1493, 1461, 1440, 1284, 1240, 1174, 1053, 1025, 887, 822, 676. ¹H NMR (400 MHz, CDCl₃) δ 7.43 (2 H, d, J = 8.7 Hz, 2 × Ar-H), 6.86 $(2 \text{ H}, \text{ d}, J = 8.7 \text{ Hz}, 2 \times \text{Ar-H}), 4.93 (2 \text{ H}, \text{ s}, \text{SCH}_2\text{O}), 3.80 (3 \text{ H}, \text{ s}, \text{OCH}_3), 3.78-3.71 (4 \text{ H}, \text{ m}, \text{OCH}_3)$ OCH_2CH_2OH), 2.07 (1 H, br s, OH). ¹³C NMR (100 MHz, CDCl₃) δ 159.4 (C_a), 133.8 (2 × Ar-C), 125.4 (C_a), 114.6 (2 × Ar-C), 77.8 (SCH₂O), 69.7 (OCH₂), 61.6 (OCH₂), 55.3 (OCH₃). HRMS (EI) *m/z* Calculated for C₁₀H₁₄O₃S [M]: 214.0664; Found: 214.0665 [M].

2-(((4-Methoxyphenyl)thio)methoxy)ethyl 4-methylbenzene sulfonate (S11)

Triethylamine (6.82 mL, 48.93 mmol) and trimethylamine hydrochloride MeO (0.15 g, 1.63 mmol) were added to a solution of sulfide **6k** (3.53 g, 16.47 mmol) in toluene (70 mL) at 0 °C and stirred for 1 h. 4-Toluenesulfonyl chloride (6.22 g, 32.63 mmol) was added portionwise. The mixture was stirred at 0 °C for 50 min then allowed to warm to rt and stirred for a further 1 h 30 min. H_2O (75 mL) was added to the reaction and the product was extracted with EtOAc (5 x 25 mL). The combined organic layers were dried (MgSO₄), filtered and the solvent removed under reduced pressure. Purification by flash chromatography (20% EtOAc/hexane) afforded tosylate **S11** (5.93 g, 98%) as a yellow oil. $R_f = 0.23$ (20% EtOAc/hexane). IR (film)/cm⁻¹ 2954, 1595, 1493, 1353, 1286, 1245, 1172, 1095, 1003, 912, 814, 771, 661. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (2 H, d, J = 7.9 Hz, 2 × Ts-H), 7.37 (2 H, d, J = 8.9 Hz, 2 × Ar-H), 7.31 (2 H, d, J = 7.9 Hz, 2 × Ts-H), 6.82 (2 H, d, J = 8.7 Hz, 2 × Ar-H), 4.81 (2 H, s, SCH₂O), 4.21–4.17 (2 H, m, OCH₂CH₂), 3.82–3.76 $(5 \text{ H, m, OCH}_3 + \text{OCH}_2\text{CH}_2)$, 2.43 (3 H, s, CH_3) . ¹³C NMR (100 MHz, CDCl₃) δ 159.4 (C_q), 144.8 (C_q), 133.8 (2 × Ar-C), 132.9 (C_q), 129.8 (2 × Ts-C), 128.0 (2 × Ts-C), 125.3 (C_q), 114.6 (2 × Ar-C), 77.7 (SCH₂O), 68.7 (OCH₂CH₂), 65.5 (OCH₂CH₂), 55.3 (OCH₃), 21.6 (CH₃).

2-(((4-Methoxyphenyl)sulfonyl)methoxy)ethyl 4-methyl benzenesulfonate (2k)

meta-Chloroperbenzoic acid (5.62 g, 32.57 mmol) was added to a solution of sulfide S11 (4.00 g, 10.86 mmol) in dichloromethane (150 mL) MeO OTs at 0 °C and the mixture stirred at 0 °C for 2 h. Then warmed to rt and stirred for a further 3 h. The reaction was quenched with sat. aq. Na₂SO₃ (30 mL) and extracted with dichloromethane (5 \times 25 mL). The combined organic layers were washed with 1 M NaOH (2 × 20 mL) and sat. ag. NH₄CI (15 mL) then dried (MqSO₄), filtered and the solvent removed under reduced pressure. Purification by flash chromatography (40% EtOAc/hexane) afforded sulfone **2k** (3.81 g, 88%) as a white solid; m.p. = 85–87 °C. R_f = 0.12 (40% EtOAc/hexane). IR (film)/cm⁻¹ 3013, 2981, 1594, 1498, 1456, 1287, 1255, 1174, 1135, 1081, 1009, 994, 957, 815, 755, 658. ¹H NMR (400 MHz, CDCl₃) δ 7.83 (2 H, d, J = 9.2 Hz, 2 × Ar-H), 7.77 (2 H, d, J = 7.8 Hz, 2 × Ts-H), 7.34 (2 H, d, J = 7.8 Hz, 2 × Ts-H), 7.04 (2 H, d, J = 9.2 Hz, 2 × Ar-H), 4.48 (2 H, s, SCH₂O), 4.17–4.13 (2 H, m, OCH₂CH₂), 4.09–4.06 (2 H, m, OCH₂CH₂), 3.90 (3 H, s, OCH₃), 2.46 (3 H, s, CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 164.2 (C_a), 145.0 (C_a), 132.7 (C_a), 131.1 (2 × Ar-C), 129.9 (2 × Ts-C), 128.2 (C_a), 127.9 (2 × Ts-C), 114.6 (2 × Ar-C), 86.2 (SCH₂O), 70.5 (OCH₂CH₂), 68.5 (OCH₂CH₂), 55.7 (OCH₃), 21.6 (CH₃). HRMS (ES) *m*/*z* Calculated for C₁₇H₂₁O₇S₂ [M+H]: 401.0729; Found: 401.0724. [M+H].

2-((4-Methoxyphenyl)sulfonyl)oxetane (1k)

A solution of LiHMDS (0.61 M in THF, 3.38 mL, 2.06 mmol) was added dropwise to a solution of sulfone 2k (0.75 g, 1.87 mmol) in THF (58 mL) at 0 °C and stirred for 1 h 30 min. The reaction was guenched with sat. aq. NH₄Cl (40 mL) and extracted with CH_2Cl_2 (5 × 25 mL). The combined organics were dried (MgSO₄), filtered and the solvent removed under reduced pressure. Purification by flash chromatography (40% EtOAc/hexane) afforded oxetane 1k (0.40 g, 95%) as a white solid; m.p = 65-66 °C. R_f = 0.12 (40% EtOAc/hexane). IR (film)/cm⁻¹2973, 2929, 1594, 1497, 1448, 1302, 1262, 1136, 1090, 1058, 1027, 976, 896, 828, 801, 726, 696. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (2 H, d, J = 9.7 Hz, 2 × Ar-H), 7.02 (2 H, d, J = 9.7 Hz, 2 × Ar-H), 5.33 (1 H, dd, J = 7.8, 5.5 Hz, OCHS), 4.74–4.67 (1 H, m, OCHH), 4.61 (1 H, dt, J = 8.3, 5.7 Hz, OCHH), 3.87 (3 H, s, OCH₃), 3.13–2.97 (2 H, m, OCH₂CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 164.3 (C_q), 131.7 (2 × Ar-C), 126.4 (C_q), 114.5 (2 × Ar-C), 94.0 (SCHO), 71.2 (OCH₂), 55.7 (OCH₃), 22.5 (OCH₂CH₂). HRMS (APCI) m/z Calculated for C₁₀H₁₆NO₄S⁺ [M+NH₄]⁺: 246.0795; Found: 246.0793 [M+NH₄]⁺.

Preparation of Oxetane 17 and 18 by Suzuki Cross-coupling of Oxetane 1i

Conditions related to those reported by Buchwald were employed, using the S-Phos ligand.⁸

4-[4-(Oxetane-2-sulfonyl)phenyl]benzonitrile (17)

A flask was charged with $Pd(OAc)_2$ (2 mg, 0.009 mmol), S-Phos (7 mg, 0.017 mmol), K_2CO_3 (47 mg, 0.36 mmol), 4-cyanophenylboronic acid (35 mg, 0.24 mmol) and 2-(4-bromobenzenesulfonyl) oxetane **1i** (51 mg, 0.18 mmol) then flushed with Ar. The mixture was dissolved in dioxane:water (4:1, 1.6 mL) and heated to 65 °C for 15 h. The crude

mixture was filtered through celite and the solvent removed under reduced pressure. Purification by flash chromatography (30% EtOAc/hexane) afforded oxetane **17** (43 mg, 78%) as a white solid; m.p. 156–157 °C. R_f = 0.36 (30% EtOAc/hexane). IR (film)/cm⁻¹ 2976, 2915, 2222, 1592, 1392, 1323, 1310, 1274, 1151, 1091, 1031, 981, 905, 873, 821, 734, 675. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (2 H, d, *J* = 8.1 Hz, 2 × Ar-H), 7.81–7.76 (4 H, m, 4 × Ar-H), 7.72 (2 H, d, *J* = 8.3 Hz, 2 × Ar-H), 5.43 (1 H, dd, *J* = 6.7, 6.4 Hz, OCHS), 4.90–4.83 (1 H, m, OCHH), 4.72–4.65 (1 H, m, OCHH), 3.20–2.13 (2 H, m, OCH₂CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 145.1 (C_q), 143.5 (C_q), 135.4 (C_q), 132.9 (2 × Ar-C), 130.3 (2 × Ar-C), 128.1 (2 × Ar-C), 128.0 (2 × Ar-C), 118.4 (CN), 112.5 (C_q), 94.2 (SCHO), 71.7 (OCH₂), 22.3 (OCH₂CH₂). HRMS (ES) *m/z* Calculated C₁₆H₁₄NO₃S [M+H]: 300.0694; Found: 300.0708 [M+H].

NC

{4-[4-Oxetane-2-sulfonyl)phenyl]phenyl}methanol (18)

A flask was charged with Pd(OAc)₂ (2 mg, 0.009 mmol), S-Phos (7 mg, 0.017 mmol), K_2CO_3 (47 mg, 0.36 mmol) 4-(hydroxymethyl)phenylboronic acid (36 mg, 0.24 mmol) and 2-(4-bromobenzenesulfonyl)oxetane 1i (50 mg, 0.18 mmol) then

flushed with Ar. The mixture was dissolved in dioxane:water (4:1, 1.6 mL) and heated to 65 °C for 15 h. The crude mixture was filtered through celite and the solvent removed under reduced pressure. Purification by flash chromatography (40–100% EtOAc/hexane) afforded oxetane **18** (41 mg, 75%) as a white solid; m.p. 136–137 °C. R_f = 0.06 (40% EtOAc/hexane). IR (film)/cm⁻¹ 3505 (OH), 2913, 1593, 1392, 1302, 1272, 1146, 1025, 978, 901, 804, 756, 688. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (2 H, d, *J* = 8.5 Hz, 2 × Ar-H), 7.76 (2 H, d, *J* = 8.5 Hz, 2 × Ar-H), 7.60 (2 H, d, *J* = 8.1 Hz, 2 × Ar-H), 7.49 (2 H, d, *J* = 8.1 Hz, 2 × Ar-H), 5.42 (1 H, dd, *J* = 7.0, 6.3 Hz, OCHS), 4.86–4.79 (1 H, m, OCHH), 4.77 (2 H, s, CH₂OH), 4.70–4.64 (1 H, m, OCHH), 3.19–2.09 (2 H, m, OCH₂CH₂), 1.99 (1 H, br s, OH). ¹³C NMR (100 MHz, CDCl₃) δ 146.8 (Cq), 141.6 (Cq), 138.3 (Cq), 133.7 (Cq), 130.0 (2 × Ar-C), 127.7 (2 × Ar-C), 127.6 (2 × Ar-C), 127.5 (2 × Ar-C), 94.1 (SCHO), 71.5 (OCH₂), 64.8 (CH₂OH), 22.4 (OCH₂CH₂). HRMS (ES) *m/z* Calculated C₁₈H₁₉NO₄S [M+CH₃CN+Na]: 368.0932; Found: 368.0936 [M+CH₃CN+Na].

Preparation of Oxetanes 19 and 20 by Suzuki Cross-coupling of Oxetanes 1g and 1f

Conditions related to those reported by Buchwald were employed, using the S-Phos ligand.⁸

2-[3-(4-Methoxyphenyl)benzenesulfonyl]oxetane (19)

A flask was charged with $Pd(OAc)_2$ (2 mg, 0.01 mmol), S-Phos (9 mg, 0.021 mmol), K₂CO₃ (58 mg, 0.42 mmol), 4-methoxyphenylboronic acid (41 mg, 0.28 mmol) and 2-(3-chlorobenzenesulfonyl)oxetane **1g** (50 mg, 0.21 mmol) then flushed with Ar. The mixture was dissolved in

dioxane:water (4:1, 1.9 mL) and heated to 65 °C for 20 h. The crude mixture was filtered through celite and the solvent removed under reduced pressure. The residue was partitioned between EtOAc (20 mL) and H₂O (10 mL). The aqueous layer was extracted with EtOAc (2 × 15 mL) and the combined organic layers were dried (MgSO₄), filtered and the solvent removed under reduced pressure. Purification by flash chromatography (20% EtOAc/hexane) afforded oxetane **19** (71 mg, 95%) as a white solid; m.p. 67–68 °C. R_f = 0.24 (20% EtOAc/hexane). IR (film)/cm⁻¹ 2966, 2898, 1607, 1518, 1470, 1431, 1304, 1256, 1184, 1148, 1020, 983, 904, 833, 794, 771, 699. ¹H NMR (400 MHz, CDCl₃) δ 8.16–8.13 (1 H, m, Ar-H), 7.90 (1 H, ddd, *J* = 7.9, 1.7, 1.0 Hz, Ar-H), 7.86 (1 H, ddd, *J* = 7.8, 1.7, 1.0 Hz, Ar-H), 7.62 (1 H, dd, *J* = 7.9, 7.7 Hz, Ar-H), 7.56 (2 H, d, *J* = 8.9 Hz, 2 × Ar-H), 7.01 (2 H, d, *J* = 8.9 Hz, 2 × Ar-H), 5.43 (1 H, dd, *J* = 6.8, 6.6 Hz, OCHS), 4.86–4.79 (1 H, m, OCHH), 4.70–4.64 (1 H, m, OCHH), 3.87 (3 H, s, OCH₃), 3.18–3.11 (2 H, m, OCH₂CH₂). ¹³C NMR (100 MHz, CDCl₃) δ 160.0 (C_q), 142.2 (C_q), 135.9 (C_q), 132.3 (Ar-C), 131.4 (C_q), 129.6 (Ar-C), 128.4 (2 × Ar-C), 127.4 (Ar-C + Ar-C), 114.5 (2 × Ar-C), 94.1 (SCHO), 71.5 (OCH₂), 55.4 (OCH₃), 22.4 (OCH₂CH₂). HRMS (ES) *m/z* Calculated C₁₈H₁₉NNaO₄S [M+CH₃CN+Na]: 368.0932; Found: 368.0748 [M+CH₃CN+Na].

2-[2-(4-Methoxyphenyl)benzenesulfonyl]oxetane (20)

A flask was charged with $Pd(OAc)_2$ (2 mg, 0.01 mmol), S-Phos (9 mg, 0.021 mmol), K_2CO_3 (58 mg, 0.42 mmol), 4-methoxyphenylboronic acid (41 mg, 0.28 mmol) and 2-((2-chlorophenyl)sulfonyl) oxetane **1f** (53 mg, 0.22 mmol) then flushed with Ar. The mixture was dissolved in dioxane:water (4:1, 1.9 mL) and heated to 65 °C for 20 h. The crude mixture was filtered through celite and the solvent removed under

reduced pressure. The residue was partitioned between EtOAc (20 mL) and H₂O (10 mL). The aqueous layer was extracted with EtOAc (2 × 15 mL) and the combined organic layers were dried (MgSO₄), filtered and the solvent removed under reduced pressure. Purification by flash chromatography (10% EtOAc/hexane) afforded oxetane **20** (24 mg, 34%) as a white solid; m.p. 109–110 °C. R_f = 0.13 (10% EtOAc/hexane). IR (film)/cm⁻¹ 2968, 1609, 1516, 1465, 1442, 1309, 1244, 1147, 982, 906, 834, 755, 693. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (1 H, dd, *J* = 7.9, 1.4 Hz, Ar-H), 7.63 (1 H, ddd, *J* = 8.9, 7.4, 1.4 Hz, Ar-H), 7.55 (1 H, ddd, *J* = 8.9, 7.7, 1.4 Hz, Ar-H), 7.38–7.32 (3 H, m, 3 × Ar-H), 6.96 (2 H, d, *J* = 8.9 Hz, 2 × Ar-H), 4.86 (1 H, dd, *J* = 8.2, 5.0 Hz, OCHS), 4.85–4.79 (1 H, m, OCH₁H), 4.54 (1 H, dt, *J* = 8.7, 5.5 Hz, OCH*H*), 3.88 (3 H, s, OCH₃), 3.10–3.00 (1 H, m, OCH₂C*H*H), 2.94–2.83 (1 H, m, OCH₂C*H*H). ¹³C NMR (100 MHz, CDCl₃) δ 159.5 (C_q), 142.4 (C_q), 134.7 (C_q), 133.4 (Ar-C), 132.9 (Ar-C), 131.2 (2 × Ar-C), 130.8 (Ar-C), 130.6 (C_q), 127.7 (Ar-C), 113.1 (2 × Ar-C), 93.0 (SCHO), 71.8 (OCH₂), 55.2 (OCH₃), 21.7 (OCH₂CH₂). HRMS (ES) *m/z* Calculated C₁₈H₁₉NNaO₄S [M+CH₃CN+Na]: 368.0932; Found: 368.0948 [M+CH₃CN+Na].

o´`o

Rearrangement of alkylated oxetane 8 when stored at room temperature

Alkylated oxetane **8** was left to stand at room temperature for 24 h. Analysis of the rearranged product showed the formation of β -sulfonyl ketone **21** exclusively.

4-(4-Methylbenzenesulfonyl)butan-2-one (21)

Oxetane **8** was left to stand at room temperature for 24 h affording β -sulfonyl ketone **21** in a quantitative yield. ¹H NMR (400 MHz, CDCl₃) δ 7.80 (2 H, d, J = 8.4 Hz, 2 × Ar-H), 7.38 (2 H, d, J = 8.4 Hz, 2 × Ar-H), 3.36 (2 H, dd, CH) = 2.02 (2 H add f = 7.9, 7.4 Hz, 0.2014) = 2.47 (2 H add f = 7.9

J = 7.8, 7.1 Hz, SO₂CH₂), 2.93 (2 H, dd, J = 7.8, 7.1 Hz, COCH₂), 2.47 (3 H, s, Ar-CH₃), 2.19 (3 H, s, CH₃). ¹³C NMR (100 MHz, CDCI₃) δ 203.7 (C=O), 144.9 (C_q), 136.1 (C_q), 130.0 (2 × Ar-C), 128.0 (2 × Ar-C), 50.7 (SO₂CH₂), 36.0 (COCH₂), 29.8 (CH₃), 21.6 (Ar-CH₃). The observed data (¹H) is consistent with that reported in the literature.⁹

Studies into the stability of 2-sulfonyl oxetanes 1a-d, 1h, 1k, 13 and 16

The solution stability of the compounds shown below was assessed by incubating the compound (10 μ M) at pH 1, 4, 6, 8 and 10 in buffers containing 5% v/v 2-methoxyethanol at 70 °C for 15 hours. Analysis was performed at regular intervals by LC-UV-MS to obtain half-lives at 70 °C. Half-lives at 25 °C were then predicted using a reduction in rate of a factor of 2 per 10 degree reduction in temperature which was regarded as the worst case scenario.

The measured half-lives at 70 °C and predicted half-lives at 25 °C are reported in the tables below.

2-(Phenylsulfonyl)oxetane (1a)

рН	Measured half-life at 70 °C/days	Predicted half-life at 25 °C/days
1	0.18	4.0
4	0.22	5.0
6	0.23	5.3
8	0.23	5.3
10	0.16	3.7

2-(4-Methylbenzenesulfonyl)oxetane (1b)

рН	Measured half-life at 70 °C/days	Predicted half-life at 25 °C/days
1	0.31	10.2
4	0.45	9.9
6	0.44	9.9
8	0.40	9.1
10	0.41	9.2

2-(4-Chlorobenzenesulfonyl)oxetane (1c)

рН	Measured half-life at 70 °C/days	Predicted half-life at 25 °C/days
1	0.09	2.0
4	0.12	2.7
6	0.11	2.4
8	0.10	2.2
10	0.16	3.5

K. F. Morgan, I. A. Hollingsworth, J. A. Bull

2-(Oxetane-2-sulfonyl)pyridine (1d)

No results were possible for 1d as the compound was not detected by UV or mass spec.

2-((4-Fluorophenyl)sulfonyl)oxetane (1h)

рН	Measured half-life at 70 °C/days	Predicted half-life at 25 °C/days
1	0.09	2.0
4	0.12	2.7
6	0.11	2.4
8	0.10	2.2
10	0.16	3.5

2-((4-Methoxyphenyl)sulfonyl)oxetane (1k)

рН	Measured half-life at 70 °C/days	Predicted half-life at 25 °C/days
1	0.28	6.3
4	0.50	11.2
6	0.51	11.5
8	0.49	11.1
10	0.44	10.0

2-([1,1'-Biphenyl]-4-ylsulfonyl)oxetane (13)

рН	Measured half-life at 70 °C/days	Predicted half-life at 25 °C/days
1	0.17	3.9
4	0.21	4.7
6	0.21	4.7
8	0.20	4.6
10	0.20	4.6

2-([4'-Methoxybiphenyl]-4-ylsulfonyl)oxetane (16)

рН	Measured half-life at 70 °C/days	Predicted half-life at 25 °C/days
1	0.20	4.6
4	0.25	5.7
6	0.25	5.7
8	0.31	7.1
10	0.23	5.3

Although the mass spec data is not conclusive for every compound as to what the sulfonyl oxetane is degrading to; it is believed that the oxetane is being hydrolysed to the parent sulfonic acid (as shown below for 1c) as the product gives rise to a [M-H]⁻ signal 41 mass units less than the parent:

Figure S1: Hydrolysis of oxetane 1c to the sulfonic acid S15.

Conformational Analysis of 2-(Phenylsulfonyl)oxetane 1a

The conformational profiles of a selected variety of 2-sulfonyl oxetane fragments were investigated using computational methods. The dihedral angle around the oxetane-C-S bond was varied in 10 degree increments between 0 and 360 degrees. A relaxed coordinate scan was performed using the Gaussian 09 suite of programmes; DFT B3LYP/6-31G9(d,p) with implicit solvation in water. The data produced is shown below for 2-(phenylsulfonyl)oxetane **1a**. See full text for discussion.

Dihedral	E	ΔE	ΔE kcal/mol
Angle			
0	-972.754568	0.00469	2.94301721
10	-972.754568	0.00469	2.94301721
20	-972.7557	0.003558	2.232677022
30	-972.756845	0.002413	1.514179217
40	-972.758057	0.001201	0.753638309
50	-972.758939	0.000319	0.200175371
60	-972.759258	0	0
70	-972.759012	0.000246	0.154367214
80	-972.758215	0.001043	0.654491887
90	-972.757211	0.002047	1.284510923
100	-972.756156	0.003102	1.946532918
110	-972.755245	0.004013	2.518193617
120	-972.754657	0.004601	2.887168909
130	-972.754667	0.004591	2.880893819
140	-972.75514	0.004118	2.584082062
150	-972.755989	0.003269	2.051326921
160	-972.756848	0.00241	1.51229669
170	-972.757443	0.001815	1.138928835
180	-972.757654	0.001604	1.006524436
190	-972.757387	0.001871	1.174069339
200	-972.756656	0.002602	1.632778418
210	-972.75548	0.003778	2.370729002
220	-972.754212	0.005046	3.166410414
230	-972.75328	0.005978	3.751248802
240	-972.75289	0.006368	3.995977312
250	-972.75323	0.006028	3.782624252
260	-972.754014	0.005244	3.290657196
270	-972.755174	0.004084	2.562746756
280	-972.75651	0.002748	1.724394732
290	-972.757712	0.001546	0.970128914
300	-972.758355	0.000903	0.566640627
310	-972.758284	0.000974	0.611193766
320	-972.757531	0.001727	1.083708043
330	-972.756482	0.002776	1.741964984
340	-972.755445	0.003813	2.392691817
350	-972.754775	0.004483	2.813122847
360	-972.7545682	0.00468977	2.942872883

Conformational Analysis of 2-(Oxetan-2-ylsulfonyl)pyridine 1d

The same analysis was performed on 2-(oxetan-2-ylsulfonyl)pyridine. There were two possible low energy orientations of the pyridyl group, A and B, figure S2. Analysis was performed on both possible conformations.

Figure S2: Two conformations of the pyridyl group at dihedral angle = 0.

Conformation A

Dihedral	E	ΔE	ΔE kcal/mol
Angle			
0	-988.788739	0.005239	3.287519651
10	-988.789386	0.004592	2.881521328
20	-988.790482	0.003496	2.193771464
30	-988.791742	0.002236	1.403110124
40	-988.792943	0.001035	0.649471815
50	-988.793736	0.000242	0.151857178
60	-988.793978	0	0
70	-988.793753	0.000225	0.141189525
80	-988.793206	0.000772	0.484436948
90	-988.792405	0.001573	0.987071657
100	-988.791484	0.002494	1.565007446
110	-988.790557	0.003421	2.146708289
120	-988.789848	0.00413	2.59161217
130	-988.789646	0.004332	2.718368988
140	-988.789937	0.004041	2.535763869
150	-988.790607	0.003371	2.115332839
160	-988.79135	0.002628	1.649093652
170	-988.791843	0.002135	1.339731715
180	-988.791965	0.002013	1.263175617
190	-988.791692	0.002286	1.434485574
200	-988.790918	0.00306	1.92017754
210	-988.789674	0.004304	2.700798736
220	-988.788381	0.005597	3.512167873
230	-988.787533	0.006445	4.044295505
240	-988.787326	0.006652	4.174189868
250	-988.787888	0.00609	3.82152981
260	-988.788887	0.005091	3.194648319
270	-988.789992	0.003986	2.501250874
280	-988.790892	0.003086	1.936492774
290	-988.791318	0.00266	1.66917394
300	-988.791244	0.002734	1.715609606
310	-988.790864	0.003114	1.954063026
320	-988.790124	0.003854	2.418419686
330	-988.789395	0.004583	2.875873747
340	-988.788831	0.005147	3.229788823
350	-988.788572	0.005406	3.392313654
360	-988.7887392	0.00523877	3.287375324

Conformation **B**

Dihedral	E	ΔE	ΔE kcal/mol
Angle			
0	-988.789444	0.003058	1.918922522
10	-988.789444	0.003058	1.918922522
20	-988.789416	0.003086	1.936492774
30	-988.790042	0.00246	1.54367214
40	-988.790891	0.001611	1.010916999
50	-988.791643	0.000859	0.539030231
60	-988.791643	0.000859	0.539030231
70	-988.792142	0.00036	0.22590324
80	-988.791934	0.000568	0.356425112
90	-988.7915	0.001002	0.628764018
100	-988.790891	0.001611	1.010916999
110	-988.790228	0.002274	1.426955466
120	-988.789824	0.002678	1.680469102
130	-988.789871	0.002631	1.650976179
140	-988.790359	0.002143	1.344751787
150	-988.791104	0.001398	0.877257582
160	-988.791834	0.000668	0.419176012
170	-988.792334	0.000168	0.105421512
180	-988.792455	0.000168	0.105421512
190	-988.79212	0.000382	0.239708438
200	-988.791414	0.001088	0.682729792
210	-988.790312	0.00219	1.37424471
220	-988.789046	0.003456	2.168671104
230	-988.787909	0.004593	2.882148837
240	-988.787282	0.00522	3.27559698
250	-988.787355	0.005147	3.229788823
260	-988.788026	0.004476	2.808730284
270	-988.78912	0.003382	2.122235438
280	-988.790283	0.002219	1.392442471
290	-988.791379	0.001123	0.704692607
300	-988.792164	0.000338	0.212098042
310	-988.792502	0	0
320	-988.792264	0.000238	0.149347142
330	-988.791682	0.00082	0.51455738
340	-988.790797	0.001705	1.069902845
350	-988.789975	0.002527	1.585715243
360	-988.7894445	0.0030575	1.918608768

0,0

Conformational Analysis of 2-(2-Methylbenzenesulfonyl)oxetane 1e

There were two possible low energy orientations of the tolyl group; both orientations were investigated; figure S3.

Figure S3: Orientations of the tolyl ring at dihedral angle = 0.

Conformation A

Dihedral	E	ΔE	ΔE kcal/mol
Angle			
0	-1012.07044	0.00633	3.97213197
10	-1012.07125	0.00552	3.46384968
20	-1012.07245	0.00432	2.71083888
30	-1012.07385	0.00292	1.83232628
40	-1012.07517	0.0016	1.0040144
50	-1012.07619	0.00058	0.36395522
60	-1012.07672	5E-05	0.03137545
70	-1012.07677	0	0
80	-1012.07644	0.00033	0.20707797
90	-1012.07571	0.00106	0.66515954
100	-1012.0748	0.00197	1.23619273
110	-1012.07388	0.00289	1.81350101
120	-1012.07305	0.00372	2.33433348
130	-1012.07255	0.00422	2.64808798
140	-1012.07266	0.00411	2.57906199
150	-1012.07312	0.00365	2.29040785
160	-1012.07388	0.00289	1.81350101
170	-1012.07446	0.00231	1.44954579
180	-1012.07468	0.00209	1.31149381
190	-1012.07445	0.00232	1.45582088
200	-1012.07381	0.00296	1.85742664
210	-1012.07284	0.00393	2.46611037
220	-1012.07171	0.00506	3.17519554
230	-1012.07075	0.00602	3.77760418
240	-1012.07027	0.0065	4.0788085
250	-1012.0703	0.00647	4.05998323
260	-1012.07083	0.00594	3.72740346
270	-1012.07157	0.0052	3.2630468
280	-1012.07251	0.00426	2.67318834
290	-1012.07335	0.00342	2.14608078
300	-1012.0737	0.00307	1.92645263
310	-1012.07335	0.00342	2.14608078
320	-1012.07244	0.00433	2.71711397
330	-1012.07138	0.00539	3.38227351
340	-1012.07056	0.00621	3.89683089
350	-1012.07026	0.00651	4.08508359
360	-1012.070436	0.00633441	3.974899285

Conformation **B**

Dihedral	E	ΔE	ΔE kcal/mol
Angle			
0	-1012.07304	0.00296	1.85742664
10	-1012.07336	0.00264	1.65662376
20	-1012.07387	0.00213	1.33659417
30	-1012.07454	0.00146	0.91616314
40	-1012.0752	0.0008	0.5020072
50	-1012.07579	0.00021	0.13177689
60	-1012.076	0	0
70	-1012.07576	0.00024	0.15060216
80	-1012.0751	0.0009	0.5647581
90	-1012.07418	0.00182	1.14206638
100	-1012.07324	0.00276	1.73192484
110	-1012.07244	0.00356	2.23393204
120	-1012.07199	0.00401	2.51631109
130	-1012.07197	0.00403	2.52886127
140	-1012.07229	0.00371	2.32805839
150	-1012.07266	0.00334	2.09588006
160	-1012.07287	0.00313	1.96410317
170	-1012.07282	0.00318	1.99547862
180	-1012.07274	0.00326	2.04567934
190	-1012.07238	0.00362	2.27158258
200	-1012.0717	0.0043	2.6982887
210	-1012.0707	0.0053	3.3257977
220	-1012.06967	0.00633	3.97213197
230	-1012.06909	0.00691	4.33608719
240	-1012.06921	0.00679	4.26078611
250	-1012.07015	0.00585	3.67092765
260	-1012.0716	0.0044	2.7610396
270	-1012.07319	0.00281	1.76330029
280	-1012.07456	0.00144	0.90361296
290	-1012.07555	0.00045	0.28237905
300	-1012.07599	1E-05	0.00627509
310	-1012.07585	0.00015	0.09412635
320	-1012.07534	0.00066	0.41415594
330	-1012.07456	0.00144	0.90361296
340	-1012.07376	0.00224	1.40562016
350	-1012.07323	0.00277	1.73819993
360	-1012.07301	0.00298995	1.876220535

Figures S4: Graphical representation of the results from the conformational analysis of 2-(2-methylbenzenesulfonyl)oxetane 1e.

Orientation A had a lowest energy conformation with a dihedral angle of 70 degrees whilst orientation B had a preferred conformation with a dihedral angle of 60 degrees. Orientation A had the lowest overall energy conformation, figure S5, suggesting this would be the preferred conformation. This conformation was expected to be higher in energy due to potential steric interactions, however it appears to adopt a favourable intramolecular Van der Waals interaction between the oxetane oxygen and a proton on the benzyl CH_3 , therefore lowing the energy.

Dihedral angle = 70

Figure S5: Lowest overall energy conformation

¹H and ¹³C NMR spectra of selected compounds

References

- 1. B. E. Love and E. G. Jones, J. Org. Chem., 1999, 64, 3755–3756.
- 2. K. Smith, C. M. Lindsay, and G. J. Pritchard, *J. Am. Chem. Soc.*, 1989, **27**, 665–669.
- 3. A. Mccurdy, L. Jimenez, D. A. Stauffer, and D. A. Dougberty, *J. Am. Chem. Soc.*, 1992, **114**, 10314–10321.
- 4. K. Matsumoto, S. Fujie, K. Ueoka, S. Suga, and J. Yoshida, *Angew. Chem. Int. Ed.*, 2008, **47**, 2506–2508.
- 5. M. G. Cabiddu, S. Cabiddu, E. Cadoni, R. Corrias, C. Fattuoni, C. Floris, and S. Melis, *J. Org. Chem.*, 1997, **531**, 125–140.
- 6. Y. L. Chow and K. Iwai, J. Chem. Soc. Perkin Trans. 2, 1980, **1980**, 931–936.
- 7. Y. Tamura, H. Annoura, M. Fuji, M. Okura, and H. Ishibashi, *Chem. Pharm. Bull*, 1986, **34**, 540–549.
- 8. T. E. Barder, S. D. Walker, J. R. Martinelli, and S. L. Buchwald, *J. Am. Chem. Soc.*, 2005, **127**, 4685–4696.
- 9. J. Fayos, J. Clardy, L. J. Dolby, and T. Farnham, J. Org. Chem., 1977, 42, 1349–1352.